A Fast Review of C Essentials
Part |

Structural Programming
by Z. Cihan TAYSI
additions by Yunus Emre SELCUK

Outline

* Program development

* C Essentials
* Variables & constants
* Names
* Functions
* Formatting
* Comments
* Preprocessor

* Data types
* Mixing types

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Program Development

* The task of compiler is to translate
source code into machine code

source source ll source
file file file
* The compiler’s input is source code . : .

and its output is object code.

* The linker combines separate
object files into a single file

* The linker also links in the functions Runtime
from the runtime library, if Library
necessary.

* Linking usually handled

automatically. Executable

Code

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Program Development CONT’'D

* One of the reasons C is such a small language is that it defers many
operations to a large runtime library.

* The runtime library is a collection of object files
* Each file contains the machine instructions for a function that performs one
of a wide variety of services

* The functions are divided into groups, such as I/0, memory management,
mathematical operations, and string manipulation.

* For each group there is a source file, called a header file, that contains
information you need to use these functions
* by convention , the names for header files end with .h extention
* For example, one of the I/O runtime routines, called printf(), enables
you to display data on your terminal. To use this function you must
enter the following line in your source file
« ttinclude <stdio.h>

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Variables & Constants

* The statement

« j=5+10;
* A constant is a value that never\ Address Contents
changes
* A variable achieves its
variableness by representing a _ 2482
location, or address, in J 2486

computer memory. 2490

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Names

* In the C language, you can name just about anything
* variables, constants, functions, and even location in a program.
* Names may contain
* |letters, numbers, and the underscore character (_)
* but must start with a letter or underscore...
* The C language is case sensitive which means that it differentiates
between lowercase and uppercase letters
* VaR, var, VAR

* A name can NOT be the same as one of the reserved keywords.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Names cont’d

* LEGAL NAMES

* UpPeR_aNd_LoWeR_cAsE_nAmE

| * 5

* 5 * Shame

* _ sesquipedalial_name_system_n * int
ame

* ILLEGAL NAMES

* bad%#*@name

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Names cont’d
* reserved keywords = illegal names cont.d:
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void™!
default goto sizeof volatile
do if static while

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Yapisal Programlama Dersi Notlari

Expressions

* An expression is any combination of operators, numbers, and names
that donates the computation of a value.

* Examples
*5 A constant
°j A variable
e 5+j A constant plus a variable
e f() A function call

* f()/4 A function call, whose result is divided by a constant

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Assignment Statements

Ivalue = rvalue 5

* The left hand side of an assignment statement, called an Ivalue, must
evaluate to a memory address that can hold a value.

* The expression on the right-hand side of the assignment operator is
sometimes called an rvalue.

answer = num * num; </ num * num = answer; X

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Comments

* A comment is text that you /* square()
incquIe in a source file'to) * Author : P. Margolis
explain what the code is doing!

* Comments are for human readers Initial coding : 3/87

— compiler ignores them! * Params : an integer
* The C language allows you to * Returns : square of its
enter comments between the parameter

symbols /* and */

* Nested comments are NOT
supported

*/

* What to comment ?
* Function header
* changes in the code

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Functions

function function

arguments

type name

* A Cfunction is a collection of C language operations.
* performs an operation that is more complex than any of
the operations built into C language
* at the same time, a function should not be so complex that
it is difficult to understand

declarations

C statements

* Arguments represent data that are passed from
calling function to function being called.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Functions

* You can write your own functions and you should do so!
* Grouping statements that execute a sub-task under a
function leads to modular software
* You can reuse functions in different programs
* Functions avoid duplicate code that needs to be corrected
in multiple places of the entire program if a bug removal or
change request emerges.

* Bugs and requirement changes are inevitable in software
development!

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Functions

* You should declare a function before it can be used ...

int combination(int, int); //This is also called allusion
void aTaskThatNeedsCombination() {

//some code

c = combination(a, b);
//more code

}

int combination(int a, int b) {

//necessary code

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Functions

* ... or the required function should be completely coded
before it is called from another function.

int combination(int a, int b) {
//necessary code

}

void aTaskThatNeedsCombination() {
//some code
c = combination(a, b);
//more code

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Formatting Source Code

int square (int num) { . .
int square (int num) {

int answer; int answer;
’

answer = num * num;
answer = num * num;

return answer;

}

return answer;

int square (int num) {

int int square (int num)
answer; {

answer =nu int answer;
* hum; answer = num * num;

return answer; return answer;

}

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

The main() Function

* All C programs must contain a function called main(), which is
always the first function executed in a C program.

* |t can take two arguments but we need to learn much more before
going into details.

* When main() returns, the program is done.

* The exit() function is a runtime library
int main () { routine that causes a program to end,
extern int square(); returning control to operating system.

; . * If the argument to exit() is zero, it means
int solution; that the program is ending normally
solution = square(5); without errors.
exit(0); . Non—_zerq arguments indicate abnormal

¢ termination of the program.
} « Calling exit() from main() is exactly the
same as executing return statement,

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

printf() and scanf() Functions
int num;
scanf(“%d”, &num);

printf(“num : %d\n”, num);

* The printf() function can take any number of arguments.
* The first argument called the format string. It is enclosed in double quotes
and may contain text and format specifiers
* The scanf() function is the mirror image of printf(). Instead of printing
data on the terminal, it reads data entered from keyboard.
* The first argument is a format string.

* The major difference between scanf() and printf() is that the data item
arguments must be Ivalues

* Scanf requires a memory address as 2nd parameter, hence comes the &

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Yapisal Programlama Dersi Notlari

Preprocessor

* The preprocessor executes automatically, when you compile your
program
* All preprocessor directives begin with pound sign (#), which must be
the first non-space character on the line.
* unlike C statements a preprocessor directive ends with a newline, NOT a
semicolon
* |t is also capable of
* macro processing
 conditional compilation
* debugging with built-in macros

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Preprocessor cont’d

* The define facility

* it is possible to associate a name with a constant
* #define NOTHING 0

* It is a common practice to all uppercase letters for constants

* naming constants has two important benefits
* it enable you to give a descriptive name to a nondescript number
* it makes a program easier to change

* be careful NOT to use them as variables
* NOTHING =j+5

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

10

Preprocessor cont’d

* The include facility

* #include directive causes the compiler to read source text from another
file as well as the file it is currently compiling

¢ the #include command has two forms
* #include <filename>
* the preprocessor looks in a special place designated by the

operating system. This is where all system include files are kept.

* #include “filename”
* the preprocessor looks in the directory containing the source
file. If it can not find the file, it searches for the file as if it had
been enclosed in angle brackets!!!

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

hello world!!!

#include <stdio.h> * include standard input output library
int main (void) { « start point of your program
printf(“Hello World...\n");
return 0; * return a value to calling program

} * in this case 0 to show success?

* Hint: getch

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

11

Data Types

I Data types
I L 1
. l Scalar Aggregate
v
I

r s 1

Arithmetic Point
types ointers enum

1

Integral Floating
types types

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Data Types cont’d

* There are 9 reserved words for scalar data types

* Basic types
* char, int, float, double, enum

« Qualifiers char double short signed
* long, short, signed, unsigned int enum long unsigned
4 A float
* To declare j as an integer
*intj;
* You can declare variables that have the same type in a single
declaration
e intjk;
* All declarations in a block must appear before any executable
statements

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Yapisal Programlama Dersi Notlari

Data Types cont’d (Void data type)

* The void data type is used primarily for indicating that a function
does not return a value.

* A pointer can also be defined as having the void type, however this
usage will not be covered in this course.

* The void data type can also be used when a function does not take
any parameters. This notation is optional though, a simple () pair is
enough.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Different Types of Integers

* The only requirement that the ANSI Standard makes is that a byte must
be at least 8 bits long, and that ints must be at least 16 bits long and
must represent the “natural” size for computer.

* natural: the number of bits that the CPU usually handles in a single instruction

int

4 -231t0 231-1 %d
unsigned int 4 0to 23%-1 %u
short int 2 -215 to 215-1 %hi
long int (just like int!) 4 -231t0 231-1 %li
long long int (now we are talking!) 8 -264t0 264-1 %lli
unsigned short int 2 0 to 216-1 %hu
unsigned long int 4 0to 23%-1 %lu
signed char 1 -27t0 27-1 %c
unsigned char (rather meaningless) 1 0to 28-1 %hhu

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

13

Format Strings for Integers

* A format string determines #include <stdio.h>

the representation of a) - 5
value in output (printf) and 1Nt main(int argc, char *argv[]){
int sayi = 65;

th interpretation of a value printf(" int \t4d\n",sayi);
in input (scanf). printf(" uns.int \t%u\n",sayi);
8 : : printf(" srt.int \t%hi\n",sayi);
E};;?jnio\lll:lnvé:g code with pr'::Lntf(" lng.J:.nt \t%li\n",say%);
: printf("usrt.int \t%hu\n",sayi);
printf("ulng.int \t%1lu\n",sayi);
printf(" char\t%c\n",sayi);
printf(" uns.char\t%hhu\n",sayi);

system("PAUSE");
return 0;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Different Types of Integers cont’d

* Integer constants
* decimal (%d), octal (%0), Hexadecimal (%x)

Decimal Octal (leading 0 zero) Hexadecimal (leading Ox zeroX, case insensitive)

3 003 0x3
8 010 0x8

15 017 OxF

16 020 0x10

21 025 0x15

-87 -0127 -0x57

255 0377 OxFF

* Ingeneral, an integer constant has type int, if its value can fit in an
int. Otherwise it has type long int.

» Suffixes
* uorU (for unsigned)
* lorlL(forlong)

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

14

Floating Point Types

* to declare a variable capable of holding * Decimal point
floating-point values . 0.356
* float (%f) * 5.0
« Double (%If) + 0.000001
* The word double stands for double- '77
precision
* it is capable of representing about twice as * Scientific notation (%e)
much precision as a float * 3e2
* A float generally requires 4 bytes, and a * 5E-5

double generally requires 8 bytes
* read more about limits in <limits.h>

* Long double can be defined but they can become plain double in some
computer platforms

« Refer to the source book and the Internet for different representation
format modifiers (such as %5.7f)

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Format Strings for Real Numbers

#include <stdio.h>

int main(int argc, char *argv[]){
float ondalikli = 700.555;

printf(" dbl \t%f\n",ondalikli);
printf(" dbl \t%.3f\n",ondalikli);
printf(" 1lng.dbl \t%1lf\n",ondalikli);
printf(" exp \t%e\n",ondalikli);

system("PAUSE");
return 0;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

15

Initialization

* A declaration allocates memory for a variable, but it does not
necessarily store an initial value at the location
* If you read the value of such a variable before making an explicit
assignment, the results are unpredictable
* To initialize a variable, just include an assignment expression after the
variable name
e charch="A";
* Itis same as
* char ch;
e ch="A;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Mixing Types

* Implicit convertion

* Mixing signed and unsigned types

* Mixing integers with floating point types
* Explicit conversion

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

16

Mixing Types cont’d

long double

unsigned long int

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Implicit Conversions

* When the compiler encounters an expression, it divides it into
subexpressions, where each expression consists of one operator and
one or more objects, called operands, that are bound to the
operator.

*Ex:1+2.5 # involves two types, an int and a double
*Ex: —3 /4 + 2.5 #The expression contains three operators —, /, +

* Each operator has its own rules for operand type agreement, but
most binary operators require both operands to have the same type.
« If the types differ, the compiler converts one of the operands to agree with
the other one.
* For this conversion, compiler resorts to the hierarchy of data types. (Please
remember previous slide)

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Mixing Signed and Unsigned Variables

* The only difference between signed and unsigned integer types is the
way they are interpreted.
* They occupy same amount of storage
* 11101010
* has a decimal value of -22 (in two’s complement notation)
* An unsigned char with the same binary representation has a decimal value of
234
*10u—-15="7?
AT
* 4,294,967,291

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Mixing Integers with Floating Types

* Invisible conversions

int j;

float f;

j+f; // jis converted to float

j+f+2.5; //jandf both converted to double
* Loss of precision

j=2.9; // i’s value is 2

j =999999999999.888888 // overflow

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Yapisal Programlama Dersi Notlari

18

Explicit Conversions -

int j=2, k=3;
float f;
f=k/ij;

f = (float) k /j;

Cast

* Explicit conversion is called
casting and is performed with a
construct called a cast

* To cast an expression, enter the
target data type enclosed in
parenthesis directly before
expression

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

color = yellow; // OK
color = bright; // Type conflict
intensity = bright; // OK
intensity = blue; // Type conflict
color=1; // Type conflict

enum { bright, medium, dark } intensity;

Enumeration Data Type

enum { red, blue, green, yellow } color; * Enumeration types enable you to

declare variables and the set of
named constants that can be legally
stored in the variable.

* The default values start at zero and
go up by one with each new name.

* You can override default values by
specifying other values

color = green + blue; // Misleading usage

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Yapisal Programlama Dersi Notlari

19

void Data Type

* The void data type has two important purposes.

* The first is to indicate that a function does not return a value
* void func (int a, int b);

* The second is to declare a generic pointer
* We will discuss it later !

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

typedef

* typedef keyword lets you create

your own names for data types. typedeflong int INT32;

* Semantically, the variable name
becomes a synonym for the data long int j;
type. INT32 j;

* By convention, typedef names
are capitalized.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Yapisal Programlama Dersi Notlari

20

A Fast Review of C Essentials
Part |

Structural Programming & Control Flow
by Z. Cihan TAYSI

Outline

* Operators

* expressions, precedence, associativity
* Control flow

* if, nested if, switch

* Looping

I

Yapisal Programlama Dersi Notlari

21

Expressions

* Constant expressions * Float expressions (double x,y)
.5 *x/y*5
*5+6*13/3.0 * 3+ (float) 4

* Integral expressions (int j,k) * Pointer expressions (int * p)
| *p
*j/k*3 s p+l
* k-a’ * “abc”
* 3+ (int) 5.0

—

Precedence & Associativity

* All operators have two important properties called *2+3%4
precedence and associativity. «3%442
* Both properties affect how operands are attached to
operators

» Operators with higher precedence have their
operands bound, or grouped, to them before
operators of lower precedence, regardless of the
order in which they appear. *a+b-g

* In cases where operators have the same precedence, *a=b=g;
associativity (sometimes called binding) is used to Vil
determine the order in which operands grouped
with operators.

_

Yapisal Programlama Dersi Notlari

22

Precedence & Associativity

Class of operator Operators in that class | Associativity

primary

unary

multiplicative
additive

shift
relational

equality

0n->

cast operator
sizeof

& (address of)
* (dereference)
-+

S |

* [9%

Left-to-Right

Right-to-Left

Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right

HIGHEST

Precedence & Associativity

St e
Ci

bitwise AND

perators in that
lass
&

bitwise XOR (exclusive OR) A

bitwise OR (inclusive OR)

logical AND
logical OR
conditional

assignment

comma

|

&&

11

3

= 4= -= *=
/= %= >>=
&= A=

Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Right-to-Left
Right-to-Left

Left-to-Right

LOWEST

Yapisal Programlama Dersi Notlari

23

Parenthesis

* The compiler groups operands
and operators that appear
within the parentheses first, so
you can use parentheses to
specify a particular grouping
order.

< (2-3)*4
©2-(3*%4)

* The inner most parentheses are

evaluated first. The expression
(3+1) and (8-4) are at the same
depth, so they can be evaluated
in either order.
1+((3+1)/(8-4)-5)
1+(4/(8-4)-5)
1+(4/4-5)
1+(1-5)
1+-4
-3

—

Binary Arithmetic Operators

Symbol | __Form | Operation ____
*

multiplication x*y X times y

division / x/y x divided by y

remainder % X%y remainder of x divided by y
addition + X+y x plus y

subtraction - X-y X minus y

_

Yapisal Programlama Dersi Notlari

24

The Remainder Operator

operands!

* Unlike other arithmetic operators, which accept both integer and
floating point operands, the remainder operator accepts only integer

* If either operand is negative, the remainder can be negative or
positive, depending on the implementation

* The ANSI standard requires the following relationship to exist
between the remainder and division operators
* a equals a%b + (a/b) * b for any integral values of a and b

—

assign

add-assign += a+=b
substract-assign = a-=b
multiply-assign = a*=b
divide-assign = a/=b
remainder-assign %= a%=b

_

Arithmetic Assignment Operators

Symbol -E_

put the value of b into a
put the value of a+b into @
put the value of a-b into a
put the value of a*b into a
put the value of a/b into a
put the value of a%b into a

Yapisal Programlama Dersi Notlari

25

Arithmetic Assignment Operators

intm=3,n=4;
float x= 2.5,y =1.0;

m+=n+x—y m = (m + ((n+x) =y))
m/=x*n+y m=(m/((x*n) +y))
n%=y+m n=(n%(y+m))

X+=y-=m x=(x+(y=(y-m))

I

Increment & Decrement Operators

S -E_

postfix increment get value of a, then increment a
postfix decrement -- a-- get value of a, then decrement a
prefix increment ++ ++a increment a, then get value of a
prefix decrement - -b decrement a, then get value of a

I

Yapisal Programlama Dersi Notlari

Increment & Decrement Operators

main () {
int j=5, k=5; Postfix
printf(“j: %d\t k : %d\n”, j++, k--);
printf(“j: %d\t k : %d\n”, j, k);
return 0;
} main () {
int j=5, k=5; Prefix
printf(“j: %d\t k : %d\n”, ++j, --k);
printf(“j: %d\t k : %d\n”, j, k);
return O;

}
They work as they are intended, even in functions like printf !

I

Increment & Decrement Operators

intj=0,m=1,n=-1,s5;

S =M+t - —j (m++) = (-j) (s=2)
S=m+=+4* 2 m=(m+((++) *2) (s=3)
s = m++ * m++ (m++) * (m++) (implementation-dependent)

I

Yapisal Programlama Dersi Notlari

27

Comma Operator

single expression allowed!

* Ex:for(j=0, k=100; k—j>0; j++, k--)

* Allows you to evaluate two or more distinct expressions wherever a

* Result is the value of the rightmost operand

—

Relational Operators

greater than a>b
less than < a<b
greater than or equal >= a>=b
to

less than or equal to <= a<=b
equal to == a==
not equal to 1= al=b

_

e ___Form ___[Resut ___________|

1if ais greater than b; else 0
1if ais less than b; else 0

1if a is greater than or equal to b;
else 0

1if ais less than or equal to b;
else 0

1if ais equal to b; else 0
1if ais NOT equal to b; else 0

Yapisal Programlama Dersi Notlari

28

Relational Operators

int j=0, m=1, n=-1;
float x=2.5, y=0.0;

j>m j>m (0)
m/n < x (m/n)<x (1)
j<=m>=n ((j<=m)>=n) (1)
Hj==ml=y*2 ((++j) ==m) = (y * 2) (1)

I

Logical Operators

e ___Form | Resut |

logical AND a&&b 1if aand b are non zero; else 0
logical OR | | allb 1if a or b is non zero; else 0
logical negation ! la 1if ais zero; else 0

I

Yapisal Programlama Dersi Notlari

Logical Operators

int j=0, m=1, n=-1;
float x=2.5, y=0.0;
Hint: All non-zero values are interpreted as TRUE, including negative values.

j && m (j) && (m) (0)
j<m&&n<m (j<m)&&(n<m) (1)
X*58&&5 || m/n ((x*5) &&5) || (m/n) (1)
x| !In|| m+n () [1) || (m+n) (0)

—

Bit Manipulation Operators

o L___rom e __

right shift X>>y x shifted right by y bits
left shift << X<<y x shifted left by y bits
bitwise AND & X&y x bitwise ANDed with y
bitwise inclusive OR | x|y x bitwise ORed with y
bitwise exclusive OR A XNy x bitwise XORed with y
(XOR)

bitwise complement ~ ~X bitwise complement of x

_

Yapisal Programlama Dersi Notlari

30

Bit Manipulation Operators cont’d

Binary model of Left Binary model of the Result value
Operand result

5<<1 00000000 00000101 00000000 00001010
255>>3 00000000 11111111 00000000 00011111 31
8<<10 00000000 00001000 00100000 00000000 28
1<<15 00000000 00000001 10000000 00000000 -215
i
Operand result
5>>2 00000000 00000101 00000000 00000001
-5>>2 11111111 11111011 11111111 11111110 -2

I

Bit Manipulation Operators cont’d

M Hexadecimal Value Binary representation

9430 0x24D6 00100100 11010110

5722 0x165A 00010110 01011010

9430 & 5722 (=1106) 0x0452 00000100 01010010
Expression _____| Hexadecimal Value ___|Binary representation __
9430 0x24D6 00100100 11010110

5722 O0x165A 00010110 01011010

9430 | 5722 (=14046) 0x36DE 00110110 11011110

I

Yapisal Programlama Dersi Notlari

Bit Manipulation Operators cont’d

M Hexadecimal Value Binary representation

9430 0x24D6 00100100 11010110
5722 0x165A 00010110 01011010
9430 A 5722 (=12940) 0x328C 00110010 10001100
Expression ______| Hexadecimal Value ___|Binary representation _
9430 0x24D6 00100100 11010110
~9430 (-9430) 0xDB29 11011011 00101001

I

Bitwise Assighnment Operators

symbol __|___Form | Resut |

right-shift-assign >>= a>»>=b Assign a>>b to a.
left-shift-assign <<= a<<=b Assign a<<b to a.
AND-assign &= a&=b Assign a&b to a.
OR-assign |= al=b Assign a|b to a.
XOR-assign A= afr=b Assign a”b to a.

_

Yapisal Programlama Dersi Notlari

cast & sizeof Operators

* Cast operator enables you to
convert a value to a different
type

* One of the use cases of cast is to
promote an integer to a floating
point number of ensure that the
result of a division operation is
not truncated.

*3/2
* (float)3 /2

* The sizeof operator accepts two
types of operands: an
expression or a data type

* the expression may not have
type function or void or be a bit
field !

* sizeof returns the number of
bytes that operand occupies in
memory

* sizeof (3+4) returns the size of int
* sizeof(short)

—

Conditional Operator (? :)

ks _____fom | Operation |

conditional

* The conditional operator is the only

ternary operator.

* It is really just a shorthand for a
common type of if...else branch

z=((x<y)?2x:y);

_

a?b:c if a is nonzero result is
b; otherwise result is ¢

if (x<y)
Z2=X;
else

=Yy,

Yapisal Programlama Dersi Notlari

33

Memory Operators

e -m-

address of Get the address of x.

dereference R *a Get the value of the object stored
at address a.

array elements 1 x[5] Get the value of array element 5.

dot . X.y Get the value of membery in

structure x.

right-arrow -> p->y Get the value of membery in the
structure pointed to by p

Control Flow

* Conditional branching
¢ if, nested IF
* switch
* Looping
* for
* while
* do...while

Yapisal Programlama Dersi Notlari

34

The if...else statement

if (expression)

A 4

statement

Ex1:
if (x)

statementl; //executed only if x is nonzero
statement2; //always executed
Ex2:
if (x)

statementl; // executed only if x is nonzero
else

statement2; // executed only if x is zero

statement3; //always executed
Nested if statements
* Note that when an else is immediately if(a<b)
followed by an if, if(a<c)
« they are usually placed on the same line.
* this is commonly called an else if statement. return a;
else
* Nested if statements create the problem of return c;
matching each else phrase to the right if else if (b<c)
statement.
* This is often called the dangling else problem ! return b;
* An else is always associated with the nearest else
previous if.
return c;

Yapisal Programlama Dersi Notlari

35

The switch Statement

»0» expression) * The switch expression is
evaluated,

« if it matches one of the case
T labels, program flow

case ., : continues with the statement
CXPIESSIOn that follows the matching
case label.

If none of the case labels

match the switch expression,
program flow continues at
the default label, if exists!

! * No two case labels may have the

same value!

* The default label need not be the
last label, though it is good style
to put it last

I

The while Statement

* First the expression is
evaluated. If it is a nonzero
value, statement is executed.

—b'. expression
@ I * After statement is executed,

program control returns to the
top of the while statement,

,m, and the process is repeated.

* This continues indefinitely
until the expression evaluated
to zero.

Yapisal Programlama Dersi Notlari

36

The do...while Statement

»a expression) H

* The only difference between a do..while and a regular while
loop is that the test condition is at the bottom of the loop.
* This means that the program always executes statement at least one.

I

The for Statement

« First, expression1 is evaluated.

* Then expression2 is evaluated.

 This is the conditional part of the
statement.

« If expression2 is false, program
control exists the for statement.

« If expression2 is true, the
statement is executed.

* After statement is executed,
expression expression3 is evaluated.

* Then the statement loops back to

test expression2 again.

Yapisal Programlama Dersi Notlari

37

NULL Statements

* |t is possible to omit one of the
expressions in a for loop, it is
also possible to omit the body

of the for lOOp. for(c = getchar(); isspace(c); c = getchar());
* ATTENTION
* Placing a semicolon after the

test condition causes compiler if (j==1);

to execute a null statement j=0;

whenever the if expression is \

true

T

Nested Loops

* It is possible to nest looping
statements to any depth for(j=1;j<=10; j++) {

* However, keep that in mind // outer loop

inner loops must finish before printf(“%5d|”, j);
the outer loops can resume for(k=1; k <=10; k++) {
iteratin . ’
) & \ printf(“%5d”, j*k);
* |t is also possible to nest control // inner loop
and loop statements together.)
printf(“\n”);

I

Yapisal Programlama Dersi Notlari

38

break & continue & goto

* break
* We have already talked about it in switch statement
* When used in a loop, it causes program control jump to the statement
following the loop
* continue

* continue statement provides a means for returning to the top of a loop
earlier than normal.

* it is useful, when you want to bypass the reminder of the loop for some
reason.

* Please do NOT use it in any of your C programs.

* goto
* goto statement is necessary in more rudimentary languages!
* Please do NOT use it in any of your C programs.

—

Bu yansi ders notlarinin dizeni icin bog birakilmistir.

—

Yapisal Programlama Dersi Notlari

39

