Example3

• {x01y: x, y are any strings of 0's and 1's}

Extention

- Recall δ
- Extend it with δ head
- Instead of symbol, use string as input to δ head
- Form of an Inductive Definition
 - Base case: for **Input** 0, 1, or empty string ε
 - Iductive part: for any Given input

Inductive Defs

• Form:

- f(0, y) = g(y)- f(n+1, y) = h(n, y, f(n,y))
- Example1:
 - $-y^0 = 1$ $-y^{n+1} = y^n \cdot y$ $g(y) = 1, h(x,y,z) = z \cdot y$
- Example2:
 - Cumulative sum of c_i (i=0, ... n)
 - - ..

-
$$G(y) = c_0$$
 , $h(x,y,z) = z + c_{x+1}$

Inductive defs (cont'd)

- Boolean function:
 - Inputs: $x_1, ... x_n$; outputs: $y_1, ... y_m$
 - Interested in case when m=1
- Such a boolean fcn can be represented as a finite table of 2ⁿ entries
 - Or a boolean expression, consisting of
 - Boolean vars,
 - Boolean constants
 - Boolean operations (and, or, not)

Boolean Function

• The Cartesian product:

$$X_1 \times X_2 \times ... \times X_n = \{(x_1, x_1, ..., x_n) : x_1 \in X_1, ..., x_n \in X_n \}$$

 $X^n = X_1 \times X_2 \times ... \times X_n \text{ when } X_1 = X_2 = ... = X_n$

- A boolean function f is any function f: $B^n \rightarrow B^m$
- Interested in case where m=1
- Repr1:
 - A finite table with 2ⁿ entries
- Repr2:
 - A boolean expression consists of
 - Boolean vars
 - Boolean constants
 - Boolean operators

Boolean Expr (inductive defs)

- Any boolean var is a boolean expression, and any constant is a boolean expression.
- If e_1 and e_2 are boolean exprs, then so are $(e_1 \text{ or } e_2)$, $(e_1 \text{ and } e_2)$ and $(\text{not } e_1)$
- Every boolean expr with n vars represents some boolean function f: Bⁿ → B
- Theorem: Every boolean function $f: B^n \to B$ is represented by some boolean expr with n vars.

Standard Notation

- Small letters a, b, c and subscripted ones at the beginning of alphabet refer to just a symbol (elements of Σ)
- Small letters x, w, y, z and subscripted ones at the end of the alphabet refer to a string over Σ

Extention

- Recall δ
 - $-\delta: Q \times \Sigma \rightarrow Q$
- Extend it with δ head
- Instead of symbol, use string as input to δ head

$$\delta$$
 head : $Q \times \Sigma^* \rightarrow Q$

$$\delta$$
 head (q_0, x)

- Inductive definition for δ head
 - Base: no input, ε
 - Iductive part: string w =xa; a is last symbol of w.

Language accepted by FSA

- Given any $M = (Q, \Sigma, \delta, q_0, F)$
- L(M) = set of strings accepted by M
- $L(M) = \{x \text{ in } \Sigma^* : \delta \text{ head } (q_0, x) \text{ in } F\}$

Ultimately

- Given a language L₁
- Find FSA M= $(Q, \Sigma, \delta, q_0, F)$
 - such that $L(M) = L_1$

Finite State Automata(FSAs)

- Deterministic FSA (DFAs)
- To define the language of a DFA $A = (Q, \Sigma, \delta, q_0, F)$
- $L(A) = \{w : \delta \text{ head } (q0, w) \text{ is in } F\}$
- Set of strings w that take A from the start state q0 to one of accepting states.
- A lang L1 is regular if there is a DFA M such that L(M)=L1
- If a given L is L(A) for some DFA A, then we say L is a regular language.

Example4

- L= $\{x: 0110 \text{ is a substring of } x\}$
- Is L regular?

Sequences

- Two sequences
- Input: sequence of symbols
- State that M is in. Sequence of states
- Number of states = Number of inputs + 1

A lang is regular

- Given $A = \{x: 0110 \text{ is a substring of } x\}$
- Is A regular?
- One way: find a DFA M s t L(M) = A

Complement of L

L1 U L2

$L1 \cap L2$