
Introduction to Mobile Programming

Android Programming Chapter 6

Background Tasks

1. Every Android app has a main thread which is in charge of handling UI
(including measuring and drawing views), coordinating user interactions,
and receiving lifecycle events.

2. Any long-running computations and operations such as decoding a bitmap,
accessing the disk, or performing network requests should be done on a
separate background thread.

3. In general, anything that takes more than a few milliseconds should be
delegated to a background thread.

Background Processing

❖ Background processing in Android refers to the
execution of tasks in different threads than the Main
Thread, also known as UI Thread, where views are
inflated and where the user interacts with our app.

Why Background Processing?

❖ To avoid UI blockages by I/O events and prevent the
famous “Application Not Responding” dialog. A freezing
app means bad UX.

❖ Some operations are not allowed ro run in the Main
Thread, such as HTTP calls.

❖ To improve performance.

Challenges in Background Processing

1. Background tasks consume a device's limited resources, like RAM and
battery. This may result in a poor experience for the user if not handled
correctly.

App StandBy Buckets

•Android 9 (API level 28) introduces a new battery management feature,
App Standby Buckets.

•App Standby Buckets help the system prioritize apps' requests for
resources based on how recently and how frequently the apps are used.

•Based on app usage patterns, each app is placed in one of five priority
buckets.

Priority Buckets

•The system dynamically assigns each app to a priority bucket, reassigning the apps as
needed.

•The system may rely on a preloaded app that uses machine learning to determine how likely
each app is to be used, and assigns apps to the appropriate buckets.

•If the system app is not present on a device, the system defaults to sorting apps based on
how recently they were used.

•More active apps are assigned to buckets that give the apps higher priority, making more
system resources available to the app.

•In particular, the bucket determines how frequently the app's jobs run, how often the app can
trigger alarms, and how often the app can receive high-priority Firebase Cloud Messaging
messages.

1.

https://firebase.google.com/docs/cloud-messaging/

Priority Buckets

Active

Working Set

Frequent Set

Rare

Best Practices

Choosing the Right Solution for Your Work

Choosing the Right Solution for Your Work

WorkManager
❖ For work that is deferrable and expected to run even if

your device or application restarts, use WorkManager.

❖ WorkManager is an Android library that gracefully runs
deferrable background work when the work's conditions
(like network availability and power) are satisfied.

❖ WorkManager also supports running jobs as a
foreground service, which is ideal when you need to do
work that shouldn't be interrupted.

https://developer.android.com/topic/libraries/architecture/workmanager

Foreground Services
❖ For user-initiated work that need to run immediately and must

execute to completion, use a foreground service. Using a
foreground service tells the system that the app is doing
something important and it shouldn’t be killed.

❖ Foreground services are visible to users via a non-dismissible
notification in the notification tray.

❖ Foreground services are most appropriate when the app needs
to have precise control over when the work stops and starts.

❖ Music App

https://developer.android.com/guide/components/services

AlarmManager
❖ If you need to run a job at a precise time, use AlarmManager.
❖

AlarmManager launches your app, if necessary, to do the job at the time
you specify.

❖ However, if your job does not need to run at a precise time, WorkManager
is a better option;

❖
WorkManager is better able to balance system resources.

❖ For example, if you need to run a job every hour or so, but don't
need the job to run at a specific time, you should use WorkManager to set
up a recurring job.

https://developer.android.com/reference/android/app/AlarmManager

Services Overview
❖ A Service is an application component that can perform long-running

operations in the background, and it doesn't provide a user
interface.

❖ Another application component can start a service, and it continues
to run in the background even if the user switches to another
application. Additionally, a component can bind to a service to
interact with it and even perform interprocess communication (IPC).

❖ For example, a service can handle network transactions, play music,
perform file I/O, or interact with a content provider, all from the
background.

https://developer.android.com/reference/android/app/Service

Types of Services

Service or Thread ?
❖ A service is simply a component that can run in the background,

even when the user is not interacting with your application, so
you should create a service only if that is what you need.

❖ If you must perform work outside of your main thread, but only
while the user is interacting with your application, you should
instead create a new thread.

❖ For example, if you want to play some music, but only while
your activity is running, you might create a thread in onCreate(), start
running it in onStart(), and stop it in onStop(). Also consider using AsyncTask or
HandlerThread instead of the traditional Thread class.

https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onStart()
https://developer.android.com/reference/android/app/Activity#onStop()
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/HandlerThread
https://developer.android.com/reference/java/lang/Thread

(Un)Bounded Services

Starting a Service

❖ You can start a service from an activity or other
application component by passing an Intent to startService() or
startForegroundService().

❖ The Android system calls the service's onStartCommand() method
and passes it the Intent, which specifies which service to
start.

https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Context#startService(android.content.Intent)
https://developer.android.com/reference/android/content/Context#startForegroundService(android.content.Intent)
https://developer.android.com/reference/android/app/Service#onStartCommand(android.content.Intent,%20int,%20int)
https://developer.android.com/reference/android/content/Intent

Stopping a Service

❖ aA started service must manage its own lifecycle. That
is, the system doesn't stop or destroy the service unless
it must recover system memory and the service
continues to run after onStartCommand() returns.

❖ The service must stop itself by calling stopSelf(), or another
component can stop it by calling stopService().

https://developer.android.com/reference/android/app/Service#onStartCommand(android.content.Intent,%20int,%20int)
https://developer.android.com/reference/android/app/Service#stopSelf()
https://developer.android.com/reference/android/content/Context#stopService(android.content.Intent)

Declaring a Service

AsyncTask

❖ Android AsyncTask going to do background operation
on background thread and update on main thread.

❖ In android we cant directly touch background thread to
main thread in android development.

❖ Asynctask help us to make communication between
background thread to main thread.

Methods of AsyncTask
❖ onPreExecute() − Before doing background operation we should show

something on screen like progressbar or any animation to user. we can
directly comminicate background operation using on doInBackground()
but for the best practice, we should call all asyncTask methods .

❖ doInBackground(Params) − In this method we have to do background
operation on background thread. Operations in this method should not
touch on any mainthread activities or fragments.

❖ onProgressUpdate(Progress…) − While doing background operation, if
you want to update some information on UI, we can use this method.

❖ onPostExecute(Result) − In this method we can update ui of
background operation result.

AsyncTask Example

Summary

AsyncTask

❖ AsyncTask can be good solution where your task is
executed in background(worker thread) by using
doInBackground() method and result is delivered to UI
using onPostExecute() method.

❖ AsyncTask is created and executed from main thread.
And you can execute instance of AsyncTask only once.

Services
❖ Service is best used when your task is not too long

because it runs on main thread. It can be created and
executed from any thread.

❖ If any important task need to be executed then we can
use ForegroundService. ForegroundService uses
notification and android system will not kill your
ForegroundService.

❖ It blocks main thread or UI thread if started from main
thread.

IntentService

❖ IntentService stored all requested task in queue and
executes them sequentially in worker thread. It stops
itself when there is no more task in its queue.

❖ It cannot run task in parallel and executes task after
poping it from its queue

DownloadManager

❖ Download manager should be preferred when app
wants to download large media or document files.

WorkManager

❖ Latest happening in the word of android background
processing is WorkManager. It is library released under
Android Jetpack.

❖ It also takes care of system resources while executing
background task. You can even execute periodic task or
one time task using handy classes provided in this
library.

Firebase Jobdispatcher and JobScheduler

❖ Jobdispatcher will execute your task in background
taking into account system resources like battery and
memory.

❖ Using Firebase jobdispatcher you can schedule your
task periodically at regular interval. Internally it uses
android JobScheduler to execute its task.

