Introduction to Mobile Programming

Android Programming crapers

l.ocation-based Services

. Battery Optimization

1. Background location gathering is throttled and location is computed, and
delivered only a few times an hour.

2. Wi-Fi scans are more conservative, and location updates aren't computed
when the device stays connected to the same static access point.

3. Geofencing responsiveness changes from tens of seconds to
approximately two minutes. This change noticeably improves battery
performance—up to 10 times better on some devices.

Battery Drain

I AEELIRACY

The precision of the location data. In general, the higher the accuracy, the
higher the battery drain.

2 FREQOUENCY

How often location is computed. The more frequent location is
computed, the more battery is used.

o EXTENCE Y

How quickly location data is delivered. Less latency usually requires
more battery.

AGCCURACY

e setPriority()

PRIORITY_HIGH_ACCURACY provides the most accurate location possible, which is computed using as many inputs
as necessary (it enables GPS, Wi-Fi, and cell, and uses a variety of Sensors), and may cause significant battery
drain.

PRIORITY_BALANCED_POWER_ACCURACY provides accurate location while optimizing for power. Very rarely uses
GPS. Typically uses a combination of Wi-Fi and cell information to compute device location.

PRIORITY_LOW_POWER largely relies on cell towers and avoids GPS and Wi-Fi inputs, providing coarse (city-level)
accuracy with minimal battery drain.

PRIORITY_NO_POWER receives locations passively from other apps for which location has already been computed.

FREQUENCY

e Usethe setinterval() method to specify the interval at which location is computed for your app.

e Usethe setFastestInterval() to specify the interval at which location computed for other apps is delivered to
your app.

LATENCY

1. setMaxWaitTime()

If your app doesn’t immediately need a location update, you should pass the
largest possible value to the setvaxwaitrimeo method, effectively trading latency for
more data and battery efficiency.

When using geofences, apps should pass a large value into the
setNotificationResponsiveness) INethod to preserve power. A value of five minutes or larger
is recommended.

https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.Builder.html#setNotificationResponsiveness(int)

l.ocation Use Cases

User visible or foreground updates

A mapping app that needs frequent, accurate updates with very low latency. All updates happen in the
foreground: the user starts an activity, consumes location data, and then stops the activity after a short
time.

Use the setPriority() method with a value of PRIORITY_HIGH_ACCURACY or PRIORITY_BALANCED_POWER_ACCURACY .

Knowing the location of the device
A weather app wants to know the device’s location.

Use the getLastLocation() method, which returns the most recently available location (which in rare cases may be
null) . This method provides a simple way of getting location and doesn't incur costs associated with actively requesting
location updates. Use in conjunction with the isLocationAvailable() method, which returns true when the location
returned by getLastLocation() isreasonably up-to-date.

Starting updates when a user is at a specific location
Requesting updates when a user is within a certain distance of work, home, or another location.

Use geofencing in conjunction with fused location provider updates. Request updates when the app receives a geofence
entrance trigger, and remove updates when the app receives a geofence exit trigger. This ensures that the app gets more
granular location updates only when the user has entered a defined area.

l.ocation Use Cases

Starting updates based on the user’s activity state

Requesting updates only when the user is driving or riding a bike.

Use the Activity Recognition APl in conjunction with fused location provider updates. Request updates when the targeted
activity is detected, and remove updates when the user stops performing that activity.

Long running background location updates tied to geographical areas

The user wants to be notified when the device is within proximity of a retailer.

This is an excellent use case for geofencing. Because the use case almost certainly involves background location, use
the addGeofences(GeofencingRequest, PendingIntent) method.

Long running background location updates without a visible app component.

An app that passively tracks location

Use the setPriority() method with the PRIORITY_NO_POWER option if possible because it incurs almost no battery
drain. If using PRIORITY_NO_POWER isn't possible, use PRIORITY_BALANCED_POWER_ACCURACY or PRIORITY_LOW_POWER,
but avoid using PRIORITY_HIGH_ACCURACY for sustained background work because this option substantially drains

battery.

l.ocation Best Practices

Remove location updates
Set timeOUtS setExpirationDuration(),
Batch Requests

Use passive location updates

requestlocationUpdates()

removelLocationUpdates()

setExpirationTime()

LocationRequest request = new LocationRequest();
request.setInterval(16 * 60 * 1000);
request.setMaxWaitTime(60 * 60 * 1000) ;

LocationRequest request = new LocationRequest();
request.setInterval(15 * 60 * 1000);
request.setFastestInterval(2 * 66 * 1000);

Get the Last Known Location

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
+ Setup Google Play Services package="com.google.android.gms.location.sample.basiclocationsample" >

% Specify app PermiSSionS <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

. : . </manifest>
+ (Create Location Services client

private FusedLocationProviderClient fusedLocationClient;

4

0>

L)

- Get the Last Known Location

/] ..
@0Override
protected void onCreate(Bundle savedInstanceState) {
/] ...
fusedLocationClient = LocationServices.getFusedLocationProviderClient(this);
}

fusedLocationClient.getLastLocation()
.addOnSuccessListener(this, new OnSuccesslListener<Location>() {
@0verride
public void onSuccess(Location location) {
// Got last known location. In some rare situations this can be null.
if (location != null) {
// Logic to handle location object

1)

Create and Monitor Geofences

\~ 6\
o,
o o
Q
Ss‘ E)
.~. - —".'

California Ave
Caltrain Statlon

‘_—' &0'

¢’
s
e
o &
; S
J A &
&
/' A o
J v
i

Geofencing combines awareness of the user's current location with awareness of the user's proximity to
locations that may be of interest. To mark a location of interest, you specify its latitude and longitude.
To adjust the proximity for the location, you add a radius. The latitude, longitude, and radius define a
geofence, creating a circular area, or fence, around the location of interest.

Set up for Geolence Monitoring

€0
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<!-- Required if your app targets Android 16 (API level 29) or higher -->
<uses-permission android:name="android.permission.ACCESS_BACKGROUND_LOCATION"/>

€0
private GeofencingClient geofencingClient;
@0verride
public void onCreate(Bundle savedInstanceState) {
//

geofencingClient = LocationServices.getGeofencingClient(this);

Create and Add GeoFences

geofencelList.add(new Geofence.Builder()
// Set the request ID of the geofence. This is a string to identify this
// geofence.
.setRequestId(entry.getKey())

.setCircularRegion(
entry.getValue().latitude,
entry.getValue().longitude,
Constants.GEOFENCE_RADIUS_IN_METERS
)
.setExpirationDuration(Constants.GEOFENCE_EXPIRATION_IN_MILLISECONDS)
.setTransitionTypes(Geofence.GEOFENCE_TRANSITION_ENTER |
Geofence.GEOFENCE_TRANSITION_EXIT)
.build());

Specily Geofences and Iniual Triggers

private GeofencingRequest getGeofencingRequest() {
GeofencingRequest.Builder builder = new GeofencingRequest.Builder();
builder.setInitialTrigger(GeofencingRequest.INITIAL_TRIGGER_ENTER) ;
builder.addGeofences(geofencelist);
return builder.build();

Define a Broadcast Receiver for Geofence Transitions

public class MainActivity extends AppCompatActivity {

/] ...

private PendingIntent getGeofencePendingIntent() {
// Reuse the PendingIntent if we already have it.
if (geofencePendingIntent '= null) {
return geofencePendingIntent;

}

Intent intent = new Intent(this, GeofenceBroadcastReceiver.class);

// We use FLAG_UPDATE_CURRENT so that we get the same pending intent back when

// calling addGeofences() and removeGeofences().

geofencePendingIntent = PendingIntent.getBroadcast(this, ©, intent, PendingInter
FLAG_UPDATE_CURRENT) ;

return geofencePendingIntent;

Add Geotences

00
geofencingClient.addGeofences(getGeofencingRequest(), getGeofencePendingIntent())
.addOnSuccessListener(this, new OnSuccesslListener<Void>() {
@0Override
public void onSuccess(Void aVoid) {
// Geofences added

/] ...
}
})
.addOnFailurelListener(this, new OnFailurelListener() {
@Override

public void onFailure(@NonNull Exception e) {
// Failed to add geofences
/] ...

1)

andle Geofence Transitions

€0
public class GeofenceBroadcastReceiver extends BroadcastReceiver {
/1
protected void onReceive(Context context, Intent intent) {
GeofencingEvent geofencingEvent = GeofencingEvent.fromIntent(intent);
if (geofencingEvent.hasError()) {
String errorMessage = GeofenceStatusCodes.getErrorString(geofencingEvent.getErrorCode()
Log.e(TAG, errorMessage);
return;

// Get the transition type.
int geofenceTransition = geofencingEvent.getGeofenceTransition();

// Test that the reported transition was of interest.
if (geofenceTransition == Geofence.GEOFENCE_TRANSITION_ENTER ||
geofenceTransition == Geofence.GEOFENCE_TRANSITION_EXIT) {

// Get the geofences that were triggered. A single event can trigger
// multiple geofences.
List<Geofence> triggeringGeofences = geofencingEvent.getTriggeringGeofences();

// Get the transition details as a String.

String geofenceTransitionDetails = getGeofenceTransitionDetails(
this,
geofenceTransition,
triggeringGeofences

);

// Send notification and log the transition details.
sendNotification(geofenceTransitionDetails);
Log.i(TAG, geofenceTransitionDetails);
} else {
// Log the error.
Log.e(TAG, getString(R.string.geofence_transition_invalid_type,
geofenceTransition));

Stop Geolence Monitoring

geofencingClient.removeGeofences(getGeofencePendingIntent())
.addOnSuccessListener(this, new OnSuccesslListener<Void>() {
@0verride
public void onSuccess(Void aVoid) {
// Geofences removed

/] ...
}
})
.addOnFailurelListener(this, new OnFailurelListener() {
@0Override

public void onFailure(@NonNull Exception e) {
// Failed to remove geofences
/] ...

1)

Location Object may be NULL

e |ocation is turned off in the device settings. The result could be null even if the last location was previously
retrieved because disabling location also clears the cache.

e The device never recorded its location, which could be the case of a new device or a device that has been restored
to factory settings.

e Google Play services on the device has restarted, and there is no active Fused Location Provider client that has
requested location after the services restarted. To avoid this situation you can create a new client and request
location updates yourself. For more information, see Receiving Location Updates.

Change Location Settings

* 5Set up a Location Request
* Update Interval

* Fastest Update Interval

Z ; protected void createlLocationRequest() {

<, . . _ . .

** Prlorlty Locat}onRequest locationRequest = LocationRequest.create();
locationRequest.setInterval(106600) ;
locationRequest.setFastestInterval(56000) ;
locationRequest.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);

LocationSettingsRequest.Builder builder = new LocationSettingsRequest.Builder()
.addLocationRequest(locationRequest);

Request Location Updates

@0verride
protected void onResume() {
super.onResume() ;
if (requestinglLocationUpdates) {
startLocationUpdates();

private void startLocationUpdates() {
fusedLocationClient.requestLocationUpdates(locationRequest,
locationCallback,
null /* Looper */);

private LocationCallback locationCallback;
/] ...

@0verride
protected void onCreate(Bundle savedInstanceState) {
/] ...

locationCallback = new LocationCallback() {
@0verride
public void onLocationResult(LocationResult locationResult) {
if (locationResult == null) {
return;
}
for (Location location : locationResult.getlLocations()) {
// Update UI with location data
/] ...

Stop Location Updates

@Override

protected void onPause() {
super .onPause() ;
stopLocationUpdates();

@0verride
protected void onResume() {
super.onResume() ;
if (requestinglLocationUpdates) {
startLocationUpdates() ;

}

private void stoplLocationUpdates() {
fusedLocationClient.removelLocationUpdates(locationCallback) ;

}

