Introduction to Mobile Programming

Android Programming crapers

Background Tasks

. Every Android app has a main thread which is in charge of handling Ul
(including measuring and drawing views), coordinating user interactions,
and receiving lifecycle events.

. Any long-running computations and operations such as decoding a bitmap,
accessing the disk, or performing network requests should be done on a
separate background thread.

. In general, anything that takes more than a few milliseconds should be
delegated to a background thread.

Background Processing

* Background processing in Android refers to the
execution of tasks in different threads than the Main
Thread, also known as Ul Thread, where views are
inflated and where the user interacts with our app.

Why Background Processing?

* To avoid Ul blockages by I/O events and prevent the
tamous “Application Not Responding” dialog. A freezing
app means bad UX.

* Some operations are not allowed ro run in the Main
‘Ehread stch as EEEER ¢alls:

“ To improve performance.

Challenges in Background Processing

1. Background tasks consume a device's limited resources, like RAM and
battery. This may result in a poor experience for the user if not handled
correctly.

e Android 6.0 (API level 23) introduced Doze mode and app standby. Doze mode restricts app
behavior when the screen is off and the device is stationary. App standby puts unused applications
into a special state that restricts their network access, jobs, and syncs.

e Android 7.0 (API level 24) limited implicit broadcasts and introduced Doze-on-the-Go.

e Android 8.0 (API level 26) further limited background behavior, such as getting location in the
background and releasing cached wakelocks.

e Android 9 (API level 28) introduced App Standby Buckets, in which app requests for resources are
dynamically prioritized based on app usage patterns.

App StandBy Buckets

e Android 9 (API level 28) introduces a new battery management feature,
App Standby Buckets.

e App Standby Buckets help the system prioritize apps' requests for
resources based on how recently and how frequently the apps are used.

e Based on app usage patterns, each app is placed in one of five priority
buckets.

Priority Buckets

e The system dynamically assigns each app to a priority bucket, reassigning the apps as
needed.

e The system may rely on a preloaded app that uses machine learning to determine how likely
each app is to be used, and assigns apps to the appropriate buckets.

of the system app is not present on a device, the system defaults to sorting apps based on
how recently they were used.

e More active apps are assigned to buckets that give the apps higher priority, making more
system resources available to the app.

eIn particular, the bucket determines how frequently the app's jobs run, how often the app can
trigger alarms, and how often the app can receive high-priority Firebase Cloud Messaging
messages.

https://firebase.google.com/docs/cloud-messaging/

Priority Buckets

The buckets are:

e Active: App is currently being used or was very recently used
e Working set: App is in regular use
e Frequent: App is often used, but not every day

e Rare: App is not frequently used

In addition, there's a special never bucket for apps that have been installed but have never been run. The
system imposes severe restrictions on these apps.

* Note: Every manufacturer can set their own criteria for how non-active apps are assigned to buckets. You
should not try to influence which bucket your app is assigned to. Instead, focus on making sure your app
behaves well in whatever bucket it might be in. Your app can find out what bucket it's currently in by

calling UsageStatsManager.getAppStandbyBucket ().

Active

Active

An app is in the active bucket if the user is currently using the app or very recently used the app. For
example:

e The app has launched an activity
e The app is running a foreground service
e The app has a sync adapter associated with a content provider used by a foreground app

e The user clicks on a notification from the app

If an app is in the active bucket, the system does not place any restrictions on the app's jobs, alarms, or
FCM messages.

Working Set

Working set

An app is in the working set bucket if it runs often but it is not currently active. For example, a social
media app that the user launches most days is likely to be in the working set. Apps are also promoted to
the working set bucket if they're used indirectly.

If an app is in the working set, the system imposes mild restrictions on its ability to run jobs and trigger
alarms. For details, see Power management restrictions.

Frequent Set

Frequent

An app is in the frequent bucket if it is used regularly, but not necessarily every day. For example, a
workout-tracking app that the user runs at the gym might be in the frequent bucket.

If an app is in the frequent bucket, the system imposes stronger restrictions on its ability to run jobs and
trigger alarms, and also imposes a cap on high-priority FCM messages. For details, see Power
management restrictions.

Rare

Rare

An app is in the rare bucket if it is not often used. For example, a hotel app that the user only runs while
they're staying at that hotel might be in the rare bucket.

If an app is in the rare bucket, the system imposes strict restrictions on its ability to run jobs, trigger
alarms, and receive high-priority FCM messages. The system also limits the app's ability to connect to
the internet. For details, see Power management restrictions.

Best Practices

Do not try to manipulate the system into putting your app into one bucket or another. The system's
bucketing methods can change, and every device manufacturer could choose to write their own
bucketing app with its own algorithm. Instead, make sure your app behaves appropriately no
matter which bucket it's in.

If an app does not have a launcher activity, it might never be promoted to the active bucket. You
might want to redesign your app to have such an activity.

If the app's notifications aren't actionable, users won't be able to trigger the app's promotion to the
active bucket by interacting with the notifications. In this case, you may want to redesign some
appropriate notifications so they allow a response from the user. For some guidelines, see the
Material Design Notifications design patterns.

Similarly, if the app doesn't show a notification upon receiving a high-priority FCM message, it won't
give the user a chance to interact with the app and thus promote it to the active bucket. In fact, the
only intended use for high-priority FCM messages is to push a notification to the user, so this
situation should never occur. If you inappropriately mark an FCM message as high-priority when it
doesn't trigger user interaction, it can cause other negative consequences; for example, it can
result in your app exhausting its quota, causing genuinely urgent FCM messages to be treated as
normal-priority.

Choosing the Right Solution for Your Work

e Does the app need to have precise control over the start and stop time? For example, a music app
needs to start playing music when the user starts playback, and continue playing until the user
stops it. By contrast, an app might need to periodically upload logs; the app wouldn't care just
when the uploads happened.

e |s the job interruptible, if necessary? For example, if an app is doing a very large file upload, and
the upload is interrupted, all the work might be lost, forcing the app to start the upload all over
again. In such a case, you'd want the system to avoid interrupting the job if at all possible. By
contrast, an app might periodically upload small log files, where it wouldn't be a problem if any
particular upload was interrupted.

e Can the work be deferred, or does it need to happen right away? For example, if you need to fetch
some data from the network in response to the user clicking a button, that work must be done right
away. However, if you want to upload your logs to the server, that work can be deferred without
affecting your app’s performance or user expectations.

Choosing the Right Solution for Your Work

¢ |s the work dependent on system conditions? You might want your job to run only when the device
meets certain conditions, such as being connected to power, having internet connectivity, and so
on. For example, your app might periodically need to compress its stored data. To avoid affecting
the user, you would want this job to happen only when the device is charging and idle.

e Does the work involve the collection or use of sensitive user data? For example, if you need to
provide directions in a navigation app, you can use a foreground service to continue the user-
initiated action of starting navigation.

e Does the job need to run at a precise time? A calendar app might let a user set up a reminder for
an event at a specific time. The user expects to see the reminder notification at the correct time. In
other cases, the app may not care precisely when the job runs. The app might have general
requirements—like, "Job A must run first, then Job B, then Job C"—but it doesn't require jobs to run
at a specific time.

WorkManager

* For work that is deferrable and expected to run even if
your device or application restarts, use WorkManager.

* WorkManager is an Android library that gracefully runs
deferrable background work when the work's conditions
(like network availability and power) are satisfied.

* WorkManager also supports running jobs as a
foreground service, which is ideal when you need to do
work that shouldn't be interrupted.

https://developer.android.com/topic/libraries/architecture/workmanager

Foreground Services

* For user-initiated work that need to run immediately and must
execute to completion, use a foreground service. Using a
foreground service tells the system that the app is doing
something important and it shouldn’t be killed.

“ Foreground services are visible to users via a non-dismissible

notification in the notification tray.

* Foreground services are most appropriate when the app needs
to have precise control over when the work stops and starts.

* Music App

https://developer.android.com/guide/components/services

AlarmManager

= liivoll need to ramn a job at a precise time, use Sk

semvanazee lAUNCHES yOUur app, if necessary, to do the job at the time
you specity.

* However, if your job does not need to run at a precise time, womancge:
is a better option;

worvanager 18 Detter able to balance system resources.

* For example, if you need to run a job every hour or so, but don't
need the job to run at a specific time, you should use woe to set
up a recurring job.

https://developer.android.com/reference/android/app/AlarmManager

Services Overview

* A s i an application component that can perform long-running
operations in the background, and it doesn't provide a user
interface.

* Another application component can start a service, and it continues
to run in the background even if the user switches to another
application. Additionally, a component can bind to a service to
interact with it and even perform interprocess communication (IPC).

* For example, a service can handle network transactions, play music,
perform file I/ O, or interact with a content provider, all from the
background.

https://developer.android.com/reference/android/app/Service

T'ypes of Services

Foreground

A foreground service performs some operation that is noticeable to the user. For example, an
audio app would use a foreground service to play an audio track. Foreground services must display
a Notification. Foreground services continue running even when the user isn't interacting with the
app.

Background

A background service performs an operation that isn't directly noticed by the user. For example, if
an app used a service to compact its storage, that would usually be a background service.

Bound

A service is bound when an application component binds to it by calling bindService() . A bound
service offers a client-server interface that allows components to interact with the service, send
requests, receive results, and even do so across processes with interprocess communication
(IPC). A bound service runs only as long as another application component is bound to it. Multiple
components can bind to the service at once, but when all of them unbind, the service is destroyed.

Service or Thread ?

“ A service is simply a component that can run in the background,
even when the user is not interacting with your application, so
you should create a service only if that is what you need.

* If you must perform work outside of your main thread, but only
while the user is interacting with your application, you should
instead create a new thread.

* For example, if you want to play some music, but only while
your activity is running, you might create a thread in ..c..., start
running it in ose«, and stop it in wsw0. Also consider using sqnes OF
s iNStead of the traditional v class.

https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onStart()
https://developer.android.com/reference/android/app/Activity#onStop()
https://developer.android.com/reference/android/os/AsyncTask
https://developer.android.com/reference/android/os/HandlerThread
https://developer.android.com/reference/java/lang/Thread

Un)Bounded Services

=
v

onCreate()

:

onStartCommand()

v
g

The service is stopped
by itself or a client

Unbounded
service

< Callto
bindService()
v

onCreate()

‘

onBind()

.

. Clientsare
' bound to

 service
|

All clients unbind by calling
unbindService()

v

onUnbind()

:

onDestroy()

mm

Bounded
service

Starting a Service

* You can start a service from an activity or other
application component by passing an e t0 wasenico OF

startForegroundService() e

* The Android system calls the service's wsuiconma) method

and passes it the ..., which specifies which service to
start.

Intent intent = new Intent(this, HelloService.class);
startService(intent);

https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Context#startService(android.content.Intent)
https://developer.android.com/reference/android/content/Context#startForegroundService(android.content.Intent)
https://developer.android.com/reference/android/app/Service#onStartCommand(android.content.Intent,%20int,%20int)
https://developer.android.com/reference/android/content/Intent

Stopping a Service

* aA started service must manage its own lifecycle. That
is, the system doesn't stop or destroy the service unless
it must recover system memory and the service
continues to run atter osercommanao returns.

* The service must stop itself by calling ...««, or another
component can stop it by calling .csenico.

https://developer.android.com/reference/android/app/Service#onStartCommand(android.content.Intent,%20int,%20int)
https://developer.android.com/reference/android/app/Service#stopSelf()
https://developer.android.com/reference/android/content/Context#stopService(android.content.Intent)

Declaring a Service

<manifest ... >

<application ... >
<service android:name=".ExampleService" />

</application>
</manifest>

public class RSSPullService extends IntentService {
@Override
protected void onHandleIntent(Intent workIntent) {
// Gets data from the incoming Intent
String dataString = workIntent.getDataString();

// Do work here, based on the contents of dataString

AsyncTask

* Android AsyncTask going to do background operation
on background thread and update on main thread.

* In android we cant directly touch background thread to
main thread in android development.

* Asynctask help us to make communication between
background thread to main thread.

Methods of AsyncTask

+ onPreExecute() — Before doing background operation we should show
something on screen like progressbar or any animation to user. we can
directly comminicate background operation using on doInBackground()
but for the best practice, we should call all asyncTask methods .

* doInBackground(Params) — In this method we have to do background
operation on background thread. Operations in this method should not
touch on any mainthread activities or fragments.

+ onProgressUpdate(Progress...) — While doing background operation, if
you want to update some information on Ul, we can use this method.

+ onPostExecute(Result) — In this method we can update ui of
background operation result.

AsyncTask Example

public class MainActivity extends AppCompatActivity <{
URL ImageUrl = null;
InputStream is = null;
Bitmap bmImg = null;
ImageView imageView= null;
ProgressDialog p;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);
Button button=findViewById(R.id.asyncTask);
imageView=findViewById(R. id. image) ;
button.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
AsyncTaskExample asyncTask=new AsyncTaskExample();
asyncTask.execute("https://www.tutorialspoint.com/images/tp-1logo-di

});

private class AsyncTaskExample extends AsyncTask<String, String, Bitmap> {
@Override
protected void onPreExecute() {
super.onPreExecute();
p = new ProgressDialog(MainActivity.this);
.setMessage("Please wait...It is downloading");
.setIndeterminate(false);
.setCancelable(false);
.show();

T T T T

by

@Override

protected Bitmap doInBackground(String... strings) A

try {
ImageUrl = new URL(strings([0]);
HttpURLConnection conn = (HttpURLConnection) ImageUrl.openConnection();
conn.setDoInput(true);
conn.connect();
is = conn.getInputStream();
BitmapFactory.Options options = new BitmapFactory.Options();
options. inPreferredConfig = Bitmap.Config.RGB_565;
bmImg = BitmapFactory.decodeStream(is, null, options);

} catch (IOException e) {
e.printStackTrace();

+

return bmImg;
+
@Override

protected void onPostExecute(Bitmap bitmap) {
super.onPostExecute(bitmap);
if(imageView!=null) {
p.hide();
imageView.setImageBitmap(bitmap);
telse {
p.show();
¥

AsyncTask

* AsyncTask can be good solution where your task is
executed in background(worker thread) by using
doInBackground() method and result is delivered to Ul
using onPostExecute() method.

¢ AsyncTask is created and executed from main thread.

And you can execute instance of AsyncTask only once.

Services

« Service is best used when your task is not too long
because it runs on main thread. It can be created and
executed from any thread.

« If any important task need to be executed then we can
use ForegroundService. ForegroundService uses
notification and android system will not kill your
ForegroundService.

¢ It blocks main thread or Ul thread if started from main

thread.

IntentService

“ IntentService stored all requested task in queue and

executes them sequentially in worker thread. It stops
itself when there is no more task in its queue.

[t cannot run task in parallel and executes task after

poping it from its queue

DownloadManager

* Download manager should be preferred when app
wants to download large media or document files.

WorkManager

« Latest happening in the word of android background

processing is WorkManager. It is library released under
Android Jetpack.

« It also takes care of system resources while executing
background task. You can even execute periodic task or
one time task using handy classes provided in this
library:.

Firebase Jobdispatcher and JobScheduler

* Jobdispatcher will execute your task in background

taking into account system resources like battery and
memory.

« Using Firebase jobdispatcher you can schedule your
task periodically at regular interval. Internally it uses
android JobScheduler to execute its task.

Long-running
HTTP
downloads ?

No

Deferrable
work?

Yes

Triggered by
system
conditions?

No

Run at precise
time?

No

Yes

No

DownloadManager

Yes

Foreground service

Yes

WorkManager

WorkManager

AlarmManager

protected Bitmap doInBackground(String... strings) {

try {
ImageUrl = new URL(strings[0]);
HttpURLConnection conn = (HttpURLConnection) ImageUrl.openConnection();
conn.setDoInput(true);
conn.connect();
is = conn.getInputStream();
BitmapFactory.Options options = new BitmapFactory.Options();
options. inPreferredConfig = Bitmap.Config.RGB_565;
bmImg = BitmapFactory.decodeStream(is, null, options);

} catch (IOException e) {
e.printStackTrace();

+

return bmImg;
+
@Override

protected void onPostExecute(Bitmap bitmap) {
super.onPostExecute(bitmap);
if(imageView!=null) {
p.hide();
imageView.setImageBitmap(bitmap);
telse {
p.show();
I

