Introduction to Mobile Programming

Android Programming crapers

Data and File Storage Overview

e App-specific storage: Store files that are meant for your app's use only, either in dedicated directories within an
internal storage volume or different dedicated directories within external storage. Use the directories within internal
storage to save sensitive information that other apps shouldn't access.

o Shared storage: Store files that your app intends to share with other apps, including media, documents, and other
files.

e Preferences: Store private, primitive data in key-value pairs.

e Databases: Store structured data in a private database using the Room persistence library.

Data and File Storage Overview

How much space does your data require?

Internal storage has limited space for app-specific data. Use other types of storage if you need to save a
substantial amount of data.

How reliable does data access need to be?

If your app's basic functionality requires certain data, such as when your app is starting up, place the data within
internal storage directory or a database. App-specific files that are stored in external storage aren't always
accessible because some devices allow users to remove a physical device that corresponds to external storage.

What kind of data do you need to store?

If you have data that's only meaningful for your app, use app-specific storage. For shareable media content, use
shared storage so that other apps can access the content. For structured data, use either preferences (for key-
value data) or a database (for data that contains more than 2 columns).

Should the data be private to your app?

When storing sensitive data—data that shouldn't be accessible from any other app—use internal storage,
preferences, or a database. Internal storage has the added benefit of the data being hidden from users.

Data and File Stor

App-
specific
files

Media

Documents
and other
files

App
preferences

Database

Type of

content

Files meant
for your
app's use
only

Shareable
media files
(images,
audio files,
videos)

Other types
of shareable
content,
including
downloaded
files

Key-value
pairs

Structured
data

Access method

From internal storage,
getFilesDir() or
getCacheDir()

From external storage,
getExternalFilesDir ()
or
getExternalCacheDir ()

MediaStore API

Storage Access Framework

Jetpack Preferences library

Room persistence library

Permissions needed

Never needed for internal
storage

Not needed for external
storage when your app is
used on devices that run
Android 4.4 (API level 19) or
higher

READ_EXTERNAL _STORAGE
or
WRITE_EXTERNAL_STORAGE
when accessing other apps'
files on Android 10 (API level
29) or higher

Permissions are required for

all files on Android 9 (API
level 28) or lower

None

None

None

e Overview

Can other apps access?

No, if files are in a directory
within internal storage

Yes, if files are in a directory

within external storage

Yes, though the other app
needs the

READ_EXTERNAL _STORAGE

permission

Yes, through the system file
picker

No

No

Files
removed
on app
uninstall?

Yes

No

No

Yes

Yes

Data and File Storage Overview

e [nternal file storage: Store app-private files on the device file system.

e External file storage: Store files on the shared external file system. This is usually for shared user files, such as
photos.

e Shared preferences: Store private primitive data in key-value pairs.

e Databases: Store structured data in a private database.

If you want to expose your app's data to other apps, you can use a contentprovider.

. By default, files saved to the internal storage are private to your app, and other apps cannot
access them.

. When the user uninstalls your app, the files saved on the internal storage are removed.

If you'd like to keep some data temporarily, rather than store it persistently, you should use the
special cache directory to save the data.

Files saved to the external storage are world-readable and can be modified by the user when they
enable USB mass storage to transfer files on a computer.

https://developer.android.com/reference/android/content/ContentProvider.html

Best Practces for Operating on Files

1. Don’t open and close files repeatedly
2. Share individual files

1. FileProvider

2. Content Provider

c Caution: The exact location of where your files can be saved might vary across devices. For this reason, don't use hard-

3. Device File Explorer coded file paths.

€D
<manifest ...
android:installLocation="preferExternal">

</manifest>

* Note: If your app requests a storage-related permission at runtime, the user-facing dialog indicates that your app is

requesting broad access to external storage, even when scoped storage is enabled.

Data and File Storage Overview - 11

Internal file storage: Store app-private files on the device file system.

External file storage: Store files on the shared external file system. This is usually for shared user files, such as
photos.

Shared preferences: Store private primitive data in key-value pairs.

Databases: Store structured data in a private database.

If you don't need to store a lot of data and it doesn't require structure, you should use

SharedPreferences.

2. The sharedrreterences APIs allow you to read and write persistent key-value pairs of
primitive data types: booleans, floats, ints, longs, and strings.

3. The key-value pairs are written to XML files that persist across user sessions, even if
your app is killed.

4. You can manually specify a name for the file or use per-activity files to save your data.

https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/SharedPreferences.html

Databases

e [nternal file storage: Store app-private files on the device file system.

e External file storage: Store files on the shared external file system. This is usually for shared user files, such as
photos.

e Shared preferences: Store private primitive data in key-value pairs.

e Databases: Store structured data in a private database.

Android provides full support for SQLite databases.
Any database you create is accessible only by your app.

Instead of using SQLite APIs directly, it is recommended that you create and
interact with your databases with the Room persistence library

The Room library provides an object-mapping abstraction layer that allows
fluent database access while harnessing the full power of SQLite.

https://developer.android.com/training/data-storage/room/index.html

Internal Storage vs. External Storage

Internal storage: External storage:

e |t's always available. ¢ |t's not always available, because the user can
mount the external storage as USB storage and in

e Files saved here are accessible by only your app.
some cases remove it from the device.

e When the user uninstalls your app, the system

1 . [) ' -
removes all your app's files from internal storage. It's world-readable, so files saved here may be read

outside of your control.

Internal storage is best when you want to be sure that e When the user uninstalls your app, the system
neither the user nor other apps can access your files. removes your app’s files from here only if you save

them in the directory from
getExternalFilesDir() .

External storage is the best place for files that don't
require access restrictions and for files that you want to
share with other apps or allow the user to access with a

computer.

1. Although apps are installed onto the internal storage by default, you can allow your app to
be installed on external storage by specifying the andridinstanroation attribute in your manifest.

2. Users appreciate this option when the APK size is very large and they have an external
storage space that's larger than the internal storage.

https://developer.android.com/guide/topics/manifest/manifest-element.html#install

Read and Write Operations

File file = new File(context.getFilesDir(), filename);

String filename = "myfile";
String fileContents = "Hello world!";
FileOutputStream outputStream;

try {
outputStream = openFileOutput(filename, Context. MODE_PRIVATE);

outputStream.write(fileContents.getBytes());
outputStream.close();

} catch (Exception e) {
e.printStackTrace();

}

Read and Write Operations

€0
File file = new File(context.getFilesDir(), filename);

€0
String filename = "myfile";
String fileContents = "Hello world!";
try (FileOutputStream fos = context.openFileOutput(filename, Context.MODE_PRIVATE)) {

fos.write(fileContents.toByteArray());

}

€D

FileInputStream fis = context.openFileInput(filename) ;
InputStreamReader inputStreamReader =
new InputStreamReader(fis, StandardCharsets.UTF_8);
StringBuilder stringBuilder = new StringBuilder();
try (BufferedReader reader = new BufferedReader(inputStreamReader)) {
String line = reader.readlLine();
while (line != null) {
stringBuilder.append(line) .append('\n");
line = reader.readlLine();
}
} catch (IOException e) {
// Error occurred when opening raw file for reading.
} finally {
String contents = stringBuilder.toString();

}

Cache File Operations

File.createTempFile(filename, null, context.getCacheDir());

File cacheFile = new File(context.getCacheDir(), filename);

cacheFile.delete();

context.deleteFile(cacheFileName) ;

00

00

Directory Operations

When saving a file to internal storage, you can acquire the appropriate directory as a File by calling one of two

methods:
getFilesDir()

Returns a File representing an internal directory for your app.

getCacheDir()

Returns a File representing an internal directory for your app's temporary cache files. Be sure to delete each
file once it is no longer needed and implement a reasonable size limit for the amount of memory you use at any

given time, such as TMB.

getFilesDir()

Returns a File representing the directory on the file system that's uniquely associated with your app.

getDir(name, mode)

Creates a new directory (or opens an existing directory) within your app's unique file system directory. This new
directory appears inside the directory provided by getFilesDir() .

getCacheDir()

Returns a File representing the cache directory on the file system that's uniquely associated with your app.
This directory is meant for temporary files, and it should be cleaned up regularly. The system may delete files
there if it runs low on disk space, so make sure you check for the existence of your cache files before reading

them.

To create a new file in one of these directories, you can use the File() constructor, passing the File object
provided by one of the above methods that specifies your internal storage directory. For example:

File directory = context.getFilesDir();
File file = new File(directory, filename);

Physical Storage Location

File[] externalStorageVolumes =
ContextCompat.getExternalFilesDirs(getApplicationContext(), null);
File primaryExternalStorage = externalStorageVolumes[0];

File externalCacheFile = new File(context.getExternalCacheDir(), filename);

externalCacheFile.delete();

Storage Availability

StorageStatsManager.getFreeBytes() / StorageStatsManager.getTotalBytes()

// App needs 10 MB within internal storage.
private static final long NUM_BYTES_NEEDED_FOR_MY_APP = 1024 * 1024 * 10L;

StorageManager storageManager =
getApplicationContext().getSystemService(StorageManager.class);
UUID appSpecificInternalDirUuid = storageManager.getUuidForPath(getFilesDir());
long availableBytes =
storageManager.getAllocatableBytes(appSpecificInternalDirUuid);
if (availableBytes >= NUM_BYTES_NEEDED_FOR_MY_APP) {
storageManager.allocateBytes(

appSpecificInternalDirUuid, NUM_BYTES_NEEDED_FOR_MY_APP);
} else {

Intent storageIntent = new Intent();
storageIntent.setAction(ACTION_MANAGE_STORAGE) ;
// Display prompt to user, requesting that they choose files to remove.

&0

Saving File on External Storage

e Public files: Files that should be freely available to other apps and to the user. When the user uninstalls your app,
these files should remain available to the user. For example, photos captured by your app or other downloaded
files should be saved as public files.

e Private files: Files that rightfully belong to your app and will be deleted when the user uninstalls your app.
Although these files are technically accessible by the user and other apps because they are on the external
storage, they don't provide value to the user outside of your app.

0 Caution: The external storage might become unavailable if the user removes the SD card or connects the device to a
computer. And the files are still visible to the user and other apps that have the READ_EXTERNAL _STORAGE permission. So

if your app's functionality depends on these files or you need to completely restrict access, you should instead write your

files to the internal storage.

<manifest ...>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"

android:maxSdkVersion="18" />

</manifest>

1. Using the external storage is great for files that you want to share with other
apps or allow the user to access with a computer.

Verilying that External Storage is Available

/* Checks if external storage is available for read and write */ myFile.delete():
public boolean isExternalStorageWritable() {
String state = Environment.getExternalStorageState();
if (Environment.MEDIA_MOUNTED.equals(state)) {
return true;

myContext.deleteFile(fileName) ;

}

return false;

/* Checks if external storage is available to at least read */
public boolean isExternalStorageReadable() {
String state = Environment.getExternalStorageState();
if (Environment.MEDIA_MOUNTED.equals(state) ||
Environment .MEDIA_MOUNTED_READ_ONLY.equals(state)) {
return true;

}
return false;
}
public File getPublicAlbumStorageDir(String albumName) { public File getPrivateAlbumStorageDir(Context context, String albumName) {
// Get the directory for the user's public pictures directory. // Get the directory for the app's private pictures directory.
File file = new File(Environment.getExternalStoragePublicDirectory (File file = new File(context.getExternalFilesDir (
Environment.DIRECTORY_PICTURES), albumName); Environment.DIRECTORY_PICTURES), albumName);
if (!'file.mkdirs()) { if (!file.mkdirs()) {
Log.e(LOG_TAG, "Directory not created"); Log.e(LOG_TAG, "Directory not created");
} }
return file; return file;

Important Notes

* Note: You aren't required to check the amount of available space before you save your file. You can instead try writing the
file right away, then catch an I0Exception if one occurs. You may need to do this if you don't know exactly how much
space you need. For example, if you change the file's encoding before you save it by converting a PNG image to JPEG,

you won't know the file's size beforehand.

getFreeSpace() « getTotalSpace()

* Note: When the user uninstalls your app, the Android system deletes the following:

e All files you saved on internal storage.

e All files you saved external storage using getExternalFilesDir ().

However, you should manually delete all cached files created with getCacheDir (). on a regular basis and also regularly

delete other files you no longer need.

SharedPreterences

If you have a relatively small collection of key-values that you'd like to save, you
ShOUld use the SharedPreferences APIS.

A sharedrreferences Object points to a file containing key-value pairs and provides simple
methods to read and write them.

Each sharedrreferences file is managed by the framework and can be private or shared.

e getSharedPreferences() — Use this if you need multiple shared preference files identified by name, which you
specify with the first parameter. You can call this from any Context in your app.

e getPreferences() — Usethis froman Activity if you need to use only one shared preference file for the
activity. Because this retrieves a default shared preference file that belongs to the activity, you don't need to
supply a name.

https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/SharedPreferences.html

SharedPreferences
| ewenemse sesseos

Persist Data across user sessions, even if app is Preserves state data across activity instances in same
killed and restarted, or device is rebooted user session.

Data that should be remembered across sessions, Data that should not be remembered across sessions,
such as user’s preferred settings or their game such as currently selected tab or current state of activi-
score. ty.

Common use is to store user preferences Common use is to recreate state after the device has

been rotated

Read and Write for SharedPreferences

Context context = getActivity();
SharedPreferences sharedPref = context.getSharedPreferences(
getString(R.string.preference_file_key), Context.MODE_PRIVATE);

SharedPreferences sharedPref = getActivity().getPreferences(Context.MODE_PRIVATE) ;

SharedPreferences sharedPref = getActivity().getPreferences(Context.MODE_PRIVATE) ;

SharedPreferences.Editor editor = sharedPref.edit();
editor.putInt(getString(R.string.saved_high_score_key), newHighScore);

apply() editor.commit();

SharedPreferences sharedPref = getActivity().getPreferences(Context.MODE_PRIVATE);
int defaultValue = getResources().getInteger(R.integer.saved_high_score_default_key);
int highScore = sharedPref.getInt(getString(R.string.saved_high_score_key), defaultValue);

Sending Simple Data to Other Apps

Send text content

Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND) ;

sendIntent.putExtra(Intent.EXTRA_TEXT, "This is my text to send.");
sendIntent.setType("text/plain");
startActivity(sendIntent);

Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND) ;
sendIntent.putExtra(Intent.EXTRA_TEXT, "This is my text to send.");
sendIntent.setType("text/plain");

startActivity(Intent.createChooser(sendIntent, getResources().getText(R.string.send_to)));

Send binary content

Intent shareIntent = new Intent();

shareIntent.setAction(Intent.ACTION_SEND) ;

shareIntent.putExtra(Intent.EXTRA_STREAM, uriToImage);

shareIntent.setType("image/jpeg");

startActivity(Intent.createChooser(shareIntent, getResources().getText(R.string.send_to)));

Methods of Shared Preterences

Methods of Shared Preferences

1. contains(String key): This method is used to check whether the preferences contains a preference.

2. edit(): This method is used to create a new Editor for these preferences, through which you can make modifica-
tions to the data in the preferences and atomically commit those changes back to the SharedPreferences
object.

3. getAll(): This method is used to retrieve all values from the preferences.

>

getBoolean(String key, boolean defValue): This method is used to retrieve a boolean value from the
preferences.

getFloat(String key, float defValue): This method is used to retrieve a float value from the preferences.
getint(String key, int defValue): This method is used to retrieve an int value from the preferences.
getLong(String key, long defValue): This method is used to retrieve a long value from the preferences.
getString(String key, String defValue): This method is used to retrieve a String value from the preferences.

0 o N o o

getStringSet(String key, Set defValues): This method is used to retrieve a set of String values from the

preferences.

10. registerOnSharedPreferencechangeListener(SharedPreferences.OnSharedPreferencechangeListener
listener): This method is used to registers a callback to be invoked when a change happens to a preference.

11. unregisterOnSharedPreferencechangeListener(SharedPreferences.OnSharedPreferencechangelListener lis-

tener): This method is used to unregisters a previous callback.

Sending Simple Data to Other Apps

Send multiple pieces of content

ArrayList<Uri> imageUris = new ArraylList<Uri>();
imageUris.add(imageUri1); // Add your image URIs here
imageUris.add(imageUri2);

Intent shareIntent = new Intent();
shareIntent.setAction(Intent.ACTION_SEND_MULTIPLE) ;
shareIntent.putParcelableArraylListExtra(Intent.EXTRA_STREAM, imageUris);
shareIntent.setType("image/*");
startActivity(Intent.createChooser(shareIntent, "Share images to.."));

Receiving Simple D

<activity android:name=".ui.MyActivity" >
<intent-filter>
<action android:name="android.intent.action.SEND" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="image/*" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.SEND" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="text/plain" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.SEND_MULTIPLE" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="image/*" />
</intent-filter>
</activity>

o Caution: Take extra care to check the incoming data, you never know what some other application may send you. For
example, the wrong MIME type might be set, or the image being sent might be extremely large. Also, remember to
process binary data in a separate thread rather than the main ("Ul") thread.

ata from Other Apps

void onCreate (Bundle savedInstanceState) {

// Get intent, action and MIME type
Intent intent = getIntent();

String action = intent.getAction();
String type = intent.getType();

if (Intent.ACTION_SEND.equals(action) && type != null) {
if ("text/plain".equals(type)) {
handleSendText(intent); // Handle text being sent
} else if (type.startsWith("image/")) {
handleSendImage(intent); // Handle single image being sent
}
} else if (Intent.ACTION_SEND_MULTIPLE.equals(action) && type !'= null) {
if (type.startsWith("image/")) {
handleSendMultipleImages(intent); // Handle multiple images being sent
}
} else {
// Handle other intents, such as being started from the home screen

void handleSendText(Intent intent)
String sharedText = intent.getStringExtra(Intent.EXTRA_TEXT);
if (sharedText != null) {
// Update UI to reflect text being shared

}

void handleSendImage(Intent intent) {
Uri imageUri = (Uri) intent.getParcelableExtra(Intent.EXTRA_STREAM);
if (imageUri !'= null) {
// Update UI to reflect image being shared

void handleSendMultipleImages(Intent intent) {
ArrayList<Uri> imageUris = intent.getParcelableArrayListExtra(Intent.EXTRA_STREAM);
if (imageUris !'= null) {
// Update UI to reflect multiple images being shared

