" J
BLM2031 YAPISAL PROGRAMLAMA — EYLUL 2019

Sunan: Dr.Ogr.Uyesi Yunus Emre SELGUK
GENEL BILGILER

DERS GRUPLARI

+ Gr.1Dr. Ogretim Uyesi Z. Cihan Taysi (kapasite nedeniyle kapandi)
+ Gr.2 Dr. Ogretim Uyesi H. irem TURKMEN
+ Gr.3 Dr. Ogretim Uyesi Zeyneb KURT
+ Gr.4 Dr. Ogretim Uyesi Yunus Emre SELCUK (Biz)
ILETISIM
+ lletisim bilgileri
+ Oda:D-129
* e-mail: yselcuk@yildiz.edu.tr, yunus.emre.selcuk.ytu@gmail.com
+ lletigim igin:
« Oncelikle e-mail génderiniz,
* Yz ylze gérigsmemiz gerekiyor ise randevu isteyiniz

DERS NOTLARI

* https://avesis.yildiz.edu.tr/yselcuk/dokumanlar
e Hazirlayan: Z. Cihan Taysi (B6lim1-5), Yunus Emre Selguk (Bolim 6)

" J
BLM2031 YAPISAL PROGRAMLAMA- GENEL BILGILER

BASARIM DEGERLENDIRME

* l.arasinav: 5/11/2019 (8.hafta) (b6liimiin sayfasinda duyuracagi
* 2.arasinav: 3/12/2019 (12.hafta) vize programina gére)
* Final sinavi: Final haftasinda (b6limiin sayfasinda duyurulacak)
* Puanlama (degisebilir):
¢ Arasinav %25*2, Lab %10, Final %40

DERS IGERIGI

» Hatirlatma: C Dilinde Veri Tipleri / Kontrol Deyimleri / Déngiler / Diziler

+ lsaretciler: Isaretgiler Aritmetigi, diziler ve isaretgiler, Isaretgi Dizileri, Karakter
Dizileri, Isaretcilerin isaretgisi

+ Dinamik Bellek Yénetimi ve Fonksiyonlar, Fonksiyon isaretgileri, Ozyineleme

* Yerel ve Global Degiskenler / Depolayici Siniflar / Yapilar / Birlikler / Bitsel
islemler

* Dosya iglemleri

+ C Onislemcileri ve Makrolar

» Statik ve Dinamik Kiutliphaneler

Yapisal Programlama Dersi Notlari

BLM2031 YAPISAL PROGRAMLAMA — GENEL BILGILER

2018-2019 Giiz Déneminden itibaren Gegerli Olan Onemli Yenilikler
* Senato karari uyarinca:

+ Ogrencinin ara sinav notunun %60'l + Finalin %40'1 eJer "sayisal olarak"
40'in altinda kaliyorsa 6grenci dogrudan "FF notu" ile dersten kalmis
sayilacaktir.

« BU{tlUn 6grencilere derslere devam zorunlulugu gelmistir (dersi tekrar
alanlarin énceki notu ne olursa olsun).

2019-2020 Giiz Déneminden itibaren Gegerli Olan Onemli Yenilikler

» Senato karari uyarinca:
» Derslere ait devam durumu ilgili 6gretim uyesi tarafindan yariyil sonu
sinavlari baglamadan 6nce 6grenci bilgi sisteminde ilan edilir.
* Devamsizliktan kalan 6grenciler yariyil sonu sinavina giremezler ve bu
dgrencilerin ilgili derse ait bagari notu (FO) olarak bilgi sistemine islenir.

Bu yansi ders notlarinin dizeni i¢in bog birakilmistir.

Yapisal Programlama Dersi Notlari

A Fast Review of C Essentials

Part |
Structural Programming
by
Z. Cihan TAYSI
Outline

* Program development

* C Essentials
* Functions
* Variables & constants
* Names
* Formatting
* Comments
* Preprocessor

* Data types
* Mixing types

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

Program Development

* The task of compiler is to translate
source code into machine code

source source ll source
file file file
* The compiler’s input is source code . : .

and its output is object code.

* The linker combines separate
object files into a single file

* The linker also links in the functions Runtime
from the runtime library, if Library
necessary.

¢ Linking usually handled

automatically. Executable

Code

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Program Development CONT’D

* One of the reasons C is such a small language is that it defers many
operations to a large runtime library.

* The runtime library is a collection of object files
* Each file contains the machine instructions for a function that performs one
of a wide variety of services

* The functions are divided into groups, such as I/0, memory management,
mathematical operations, and string manipulation.

* For each group there is a source file, called a header file, that contains
information you need to use these functions
* by convention , the names for header files end with .h extention

* For example, one of the I/O runtime routines, called printf(), enables
you to display data on your terminal. To use this function you must
enter the following line in your source file

* #include <stdio.h>

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

C Essentials

function function

type name

arguments

C statements

* A C function is a collection of C language operations.

* performs an operation that is more complex than any of
declarations the operations built into C language

* at the same time, a function should not be so complex that
it is difficult to understand

* Arguments represent data that are passed from
calling function to function being called.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Variables & Constants

* The statement
+ j=5+10;
* A constant is a value that never
changes

* A variable achieves its
variableness by representing a
location, or address, in
computer memory.

Variable

Address Contents

4 0

2482
2486
2490

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

Names

* In the C language, you can name just about anything
* variables, constants, functions, and even location in a program.
* Names may contain
* |letters, numbers, and the underscore character (_)
* but must start with a letter or underscore...
* The C language is case sensitive which means that it differentiates
between lowercase and uppercase letters
* VaR, var, VAR

* A name can NOT be the same as one of the reserved keywords.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Names cont’d
* LEGAL NAMES * ILLEGAL NAMES
| . 5j
*j5 * Sname
* _ system_name * int
* sesquipedalial_name * bad%#*@name

* UpPeR_aNd_LoWeR_cAsE_nAmE

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

Names cont’d

* reserved keywords = illegal names contd’.:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolami

Expressions

* An expression is any combination of operators, numbers, and names
that donates the computation of a value.

* Examples
*5 A constant
e j A variable
e 5+4j A constant plus a variable
e f() A function call

« f()/4 A function call, whose result is divided by a constant

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

Assighment Statements

lvalue = rvalue g

* The left hand side of an assignment statement, called an Ivalue, must
evaluate to a memory address that can hold a value.

* The expression on the right-hand side of the assignment operator is
sometimes called an rvalue.

answer = num * num; Q/ num * num = answer; X

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Formatting Source Code

int square (num) { int square (num) {

int answer; int answer;
;

answer = num * num; "
answer = num * num;

return answer;

’)

return answer;

int square (num) {
int
answer;
answer = num

* num;

return answer;

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

Comments

* A comment is text that you /* square()
incIuc}e in a source filefco] * Author : P. Margolis
explain what the code is doing!

* Comments are for human readers Initial coding : 3/87

— compiler ignores them! * Params : an integer
* The C language allows you to * Returns : square of its
enter comments between the parameter

symbols /* and */
* Nested comments are NOT
supported

* What to comment ?
* Function header
* changes in the code

*/

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

The main() Function

int main () {
extern int square(); * The exit() function is a runtime library
int solution: routine that causes a program to end,

returning control to operating system.
* If the argument to exit() is zero, it means
exit(0); that the program is ending normally
without errors.
* Non-zero arguments indicate abnormal
termination of the program.

solution = square(5);

* Calling exit() from a main() function is
exactly the same as executing return
statement.

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

printf() and scanf() Functions

int num;
scanf(“%d”, &num);

printf(“num : %d\n”, num);

¢ The printf() function can take any number of arguments.
* The first argument called the format string. It is enclosed in double quotes
and may contain text and format specifiers
* The scanf() function is the mirror image of printf(). Instead of printing
data on the terminal, it reads data entered from keyboard.
* The first argument is a format string.

* The major difference between scanf() and printf() is that the data item
arguments must be lvalues

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolami

Preprocessor

* The preprocessor executes automatically, when you compile your
program

* All preprocessor directives begin with pound sign (#), which must be
the first non-space character on the line.
* unlike C statements a preprocessor directive ends with a newline, NOT a
semicolon
* It is also capable of
* macro processing
 conditional compilation
* debugging with built-in macros

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

10

Preprocessor cont’d

* The define facility

* it is possible to associate a name with a constant
* #define NOTHING 0

* It is a common practice to all uppercase letters for constants

* naming constants has two important benefits
* it enable you to give a descriptive name to a nondescript number
* it makes a program easier to change

* be careful NOT to use them as variables
* NOTHING =j+5

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Preprocessor cont’d

* The include facility

* #include directive causes the compiler to read source text from another
file as well as the file it is currently compiling

* the #include command has two forms
¢ #tinclude <filename>
* the preprocessor looks in a special place designated by the
operating system. This is where all system include files are kept.
* #include “filename”
* the preprocessor looks in the directory containing the source
file. If it can not find the file, it searches for the file as if it had
been enclosed in angle brackets!!!

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

11

hello world!!!

#tinclude <stdio.h> ¢ include standard input output library
int main (void) { « start point of your program

printf(“Hello World...\n”);

return 0; * return a value to calling program
} * in this case 0 to show success?

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Data Types

Data types

1

I
. Scalar Aggregate
types
I

1l il

Arithmetic Pointers
types enum
1
Integral Floating
types types

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

Data Types cont’d

* There are 9 reserved words for scalar data types
* Basic types

* char, int, float, double, enum char double short signed
* Qualifiers int enum long unsigned
* long, short, signed, unsigned float

* To declare j as an integer
e intj;
* You can declare variablers that have the same type in a single
declaration
e intjk;
* All declaretions in a block must appear before any executable
statements

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolami

Different Types of Integers

* The only requirement that the ANSI Standard makes is that a byte
must be at least 8 bits long, and that ints must be at least 16 bits
long and must represent the “natural” size for computer.

* natural means the number of bits that the CPU usually handles in a single

instruction
Type Size Value Range
(in bytes)
int 4 -23t0 231 -1
short int 2 -2%t0 251
long int 4 -231t0231-1
unsigned short int 2 Oto2%-1
. unsigned long int 4 Oto232-1
signed char 1 -27t027-1
unsigned char 1 Oto28—-1

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

13

Different Types of Integers cont’d
* Integer constants
¢ Decimal, Octal, Hexadecimal

* In general, an integer constant has type int, if its value can fit in an int.
Otherwise it has type long int.

* Suffixes
e uorU
e lorL
Decimal Octal Hexadecimal

3 003 0x3
8 010 0x8
15 017 OxF
16 020 0x10
21 025 0x15
-87 -0127 -0x57
255 0377 OxFF

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Floating Point Types

* to declare a variable capable of ¢ Decimal point

holding floating-point values * 0.356
* float * 50
* double * 0.000001
* The word double stands for * 7
double-precision * 7
* it is capable of representing about * Scientific notation
twice as much precision as a float . 302
* A float generally requires 4 bytes, e 5E-5
and a double generally requires 8
bytes
* read more about limits in
<limits.h>

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

14

Initialization

* A declaration allocates memory for a variable, but it does not
necessarily store an initial value at the location
* If you read the value of such a variable before making an explicit
assignment, the results are unpredictable
* To initialize a variable, just include an assignment expression after the
variable name
e charch="A";
* Itis same as
e char ch;
e ch="A;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Mixing Types

* Implicit convertion

* Mixing signed and unsigned types

* Mixing integers with floating point types
* Explicit conversion

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

15

Mixing Types cont’d

long double

unsigned long int

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Implicit Conversions

* When the compiler encounters an expression, it divides it into
subexpressions, where each expression consists of one operator and
one or more objects, called operands, that are bound to the
operator.

*Ex: —3 /4 + 2.5 #The expression contains three operators —, /, +
* Each operator has its own rules for operand type agreement, but

most binary operators require both operands to have the same type.

« If the types differ, the compiler converts one of the operands to agree with
the other one.

* For this conversion, compiler resorts to the hierarchy of data types. (Please
remember previous slide)

*Ex:1+25 # involves two types, an int and a double

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

16

Mixing Signed and Unsigned Variables

* The only difference between signed and unsigned integer types is the
way they are interpreted.
* They occupy same amount of storage

* 11101010
* has a decimal value of -22 (in two’s complement notation)

* An unsigned char with the same binary representation has a decimal value of
234

*10u—-15="
«-5
* 4,294,967,291

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Mixing Integers with Floating Types

* Invisible conversions

int j;

float f;

j+f; // jis converted to float

j+f+2.5; //jandf both converted to double
* Loss of precision

j=2.5; // i’s value is 2

j =999999999999.888888 // overflow

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

17

Explicit Conversions -

int j=2, k=3;
float f;
f=k/j;

f = (float) k /j;

Cast

* Explicit conversion is called
casting and is performed with a
construct called a cast

* To cast an expression, enter the
target data type enclosed in
parenthesis directly before
expression

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolami

color = yellow; // OK
color = bright; // Type conflict
intensity = bright; // OK
intensity = blue; // Type conflict
color=1; // Type conflict

enum { bright, medium, dark } intensity;

Enumeration Data Type

enum { red, blue, green, yellow } color; * Enumeration types enable you to

declare variables and the set of
named constants that can be legally
stored in the variable.

* The default values start at zero and
go up by one with each new name.

* You can override default values by
specifying other values

color = green + blue; // Misleading usage

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

18

void Data Type

* The void data type has two important purposes.

* The first is to indicate that a function does not return a value
* void func (int a, int b);

* The second is to declare a generic pointer
* We will discuss it later !

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

typedef

* typedef keyword lets you create

your own names for data types. typedef long int INT32;

* Semantically, the variable name
becomes a synonym for the data long int j;
type. INT32 j;

* By convention, typedef names
are capitalized.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

19

A Fast Review of C Essentials

Part Il
Structural Programming
by
Z. Cihan TAYSI
Outline

* Operators

* expressions, precedence, associativity
* Control flow

* if, nested if, switch

* Looping

I

Yapisal Programlama Dersi Notlari

20

Expressions

* Constant expressions * Float expressions (double x,y)
.5 *x/y*5
*5+6*13/3.0 * 3+ (float) 4

* Integral expressions (int j,k) * Pointer expressions (int * p)
| °p
e j/k*3 * p+l
* k-a’ * “abc”
* 3+ (int) 5.0

—

Precedence & Associativity

* All operators have two important properties called *2+3%4
precedence and associativity. «3%442
* Both properties affect how operands are attached to
operators

» Operators with higher precedence have their
operands bound, or grouped, to them before
operators of lower precedence, regardless of the
order in which they appear. *a+b-g

* In cases where operators have the same precedence, *a=b=g;
associativity (sometimes called binding) is used to
determine the order in which operands grouped
with operators.

_

Yapisal Programlama Dersi Notlari

21

Precedence & Associativity

Class of operator Operators in that class | Associativity

primary

unary

multiplicative
additive

shift
relational

equality

0o->

cast operator
sizeof

& (address of)
* (dereference)
-+

S |

* [9%

Left-to-Right

Right-to-Left

Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right

HIGHEST

Precedence & Associativity

St
Ci

bitwise AND

bitwise XOR (exclusive OR)
bitwise OR (inclusive OR)

logical AND
logical OR
conditional

assignment

comma

perators in that
lass
&

A

I
&&
11
3

= 4= -= *=
/= %= >>=
&= A=

Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Left-to-Right
Right-to-Left
Right-to-Left

Left-to-Right

LOWEST

Yapisal Programlama Dersi Notlari

22

Parenthesis

* The compiler groups operands
and operators that appear
within the parentheses first, so
you can use parentheses to
specify a particular grouping
order.

< (2-3)*4
©2-(3*%4)

* The inner most parentheses are

evaluated first. The expression
(3+1) and (8-4) are at the same
depth, so they can be evaluated
in either order.

1+((3+1)/(8-4)-5)

1+(4/(8-4)-5)

1+(4/4-5)

1+(1-5)

1+-4

-3

—

Binary Arithmetic Operators

Symbol | __Form | Operation ____
*

multiplication x*y X times y

division / x/y x divided by y

remainder % X%y remainder of x divided by y
addition + X+y x plus y

subtraction - X-y X minus y

_

Yapisal Programlama Dersi Notlari

23

The Remainder Operator

operands!

* Unlike other arithmetic operators, which accept both integer and
floating point operands, the remainder operator accepts only integer

* If either operand is negative, the remainder can be negative or
positive, depending on the implementation

* The ANSI standard requires the following relationship to exist
between the remainder and division operators
* a equals a%b + (a/b) * b for any integral values of a and b

—

assign

add-assign += a+=b
substract-assign = a-=b
multiply-assign = a*=b
divide-assign = a/=b
remainder-assign %= a%=b

_

Arithmetic Assignment Operators

Symbol -E_

put the value of b into a
put the value of a+b into a
put the value of a-b into a
put the value of a*b into a
put the value of a/b into a
put the value of a%b into a

Yapisal Programlama Dersi Notlari

24

Arithmetic Assignment Operators

intm=3,n=4;
float x = 2.5,y = 1.0;

m+=n+x—y m = (m + ((n+x) =y))
m/=x*n+y m=(m/((x*n) +y))
n%=y+m n=(n%(y+m))

X+=y-=m x=(x+(y=(y-m))

I

Increment & Decrement Operators

o -E_

postfix increment get value of a, then increment a
postfix decrement -- a-- get value of a, then decrement a
prefix increment ++ ++a increment a, then get value of a
prefix decrement - -b decrement a, then get value of a

I

Yapisal Programlama Dersi Notlari

Increment & Decrement Operators

main () {
int j=5, k=5; Postfix
printf(“j: %d\t k : %d\n”, j++, k--);
printf(“j: %d\t k : %d\n”, j, k);
return 0;
} main () {
int j=5, k=5; Prefix
printf(“j: %d\t k : %d\n”, ++j, --k);
printf(“j: %d\t k : %d\n”, j, k);
return 0;

I

Increment & Decrement Operators

intj=0,m=1,n=-1;

M+ -~ (m+4) = () (2)
m+=++ * 2 m=(m+((++) *2) (3)
m++ * m++ (m++) * (m++) (implementation-dependent)

I

Yapisal Programlama Dersi Notlari

26

Comma Operator

single expression allowed!

* Ex:for(j=0, k=100; k—j>0; j++, k--)

* Allows you to evaluate two or more distinct expressions wherever a

* Result is the value of the rightmost operand

—

Relational Operators

greater than a>b
less than < a<b
greater than or equal >= a>=b
to

less than or equal to <= a<=b
equal to == a==
not equal to 1= al=b

_

e ___Form ___[Resut __________|

1if ais greater than b; else 0
1if ais less than b; else 0

1if a is greater than or equal to b;
else 0

1if ais less than or equal to b;
else 0

1if ais equal to b; else 0
1if ais NOT equal to b; else 0

Yapisal Programlama Dersi Notlari

27

Relational Operators

int j=0, m=1, n=-1;
float x=2.5, y=0.0;

j>m j>m (0)
m/n < x (m/n)<x (1)
j<=m>=n ((j<=m)>=n) (1)
HHj==ml=y*2 ((++j) ==m) = (y * 2) (1)

I

Logical Operators

e ___form | Resut |

logical AND a&&b 1if aand b are non zero; else 0
logical OR | | allb 1ifaorbis non zero; else 0
logical negation ! la 1if ais zero; else 0

I

Yapisal Programlama Dersi Notlari

Logical Operators

int j=0, m=1, n=-1;
float x=2.5, y=0.0;
Hint: All non-zero values are interpreted as FALSE, including negative values.

j&&m (j) && (m) (0)
j<m&&n<m (j<m)&&(n<m) (1)
X*5&&5 || m/n ((x*5)&&5) || (m/n) (1)
X[[!n[lm+n (%) ') || (m+n) (0)

—

Bit Manipulation Operators

o L___rom e __

right shift X>>y x shifted right by y bits
left shift << X<<y x shifted left by y bits
bitwise AND & X&y x bitwise ANDed with y
bitwise inclusive OR | x|y x bitwise ORed with y
bitwise exclusive OR A XNy x bitwise XORed with y
(XOR)

bitwise complement ~ ~X bitwise complement of x

_

Yapisal Programlama Dersi Notlari

29

Bit Manipulation Operators cont’d

Binary model of Left Binary model of the Result value
Operand result

5<<1 00000000 00000101 00000000 00001010
255>>3 00000000 11111111 00000000 00011111 31
8<< 10 00000000 00001000 00100000 00000000 28
1<<15 00000000 00000001 10000000 00000000 -215
i
Operand result
-5>>2 11111111 11111011 00111111 11111110

-5>>2 11111111 111211111 11111111 11111110 -2

I

Bit Manipulation Operators cont’d

M Hexadecimal Value Binary representation

9430 0x24D6 00100100 11010110
5722 0x165A 00010110 01011010
9430 & 5722 0x0452 00000100 01010010
Expression _____| Hexadecimal Value ___|Binary representation _
9430 0x24D6 00100100 11010110
5722 0x165A 00010110 01011010
9430 | 5722 0x36DE 00110110 11011110

I

Yapisal Programlama Dersi Notlari

Bit Manipulation Operators cont’d

M Hexadecimal Value Binary representation

9430 0x24D6 00100100 11010110
5722 0x165A 00010110 01011010
9430 A 5722 0x328C 00110010 10001100
Expression ______| Hexadecimal Value ___|Binary representation _
9430 0x24D6 00100100 11010110
~9430 0xDB29 11011011 00101001

I

Bitwise Assignment Operators

symbol __|___Form | __Resut |

right-shift-assign >>= a>»>=b Assign a>>b to a.
left-shift-assign <<= a<<=b Assign a<<b to a.
AND-assign &= a&=b Assign a&b to a.
OR-assign |= al=b Assign a|b to a.
XOR-assign A= afr=b Assign ab to a.

_

Yapisal Programlama Dersi Notlari

cast & sizeof Operators

* Cast operator enables you to
convert a value to a different
type

* One of the use cases of cast is to
promote an integer to a floating
point number of ensure that the
result of a division operation is
not truncated.

*3/2
* (float)3 /2

* The sizeof operator accepts two
types of operands: an
expression or a data type

* the expression may not have
type function or void or be a bit
field !

* sizeof returns the number of
bytes that operand occupies in
memory

* sizeof (3+5) returns the size of int
* sizeof(short)

—

Conditional Operator (? :)

s _____fom | Operation |

conditional

* The conditional operator is the only

ternary operator.

* It is really just a shorthand for a
common type of if...else branch

z=((x<y)?x:y);

_

a?b:c if a is nonzero result is
b; otherwise result is ¢

if (x<y)
Z=X;
else

z=Yy,;

Yapisal Programlama Dersi Notlari

32

Memory Operators

e -m-

address of Get the address of x.

dereference R *a Get the value of the object stored
at address a.

array elements | x[5] Get the value of array element 5.

dot . X.y Get the value of membery in

structure x.

right-arrow -> p->y Get the value of membery in the
structure pointed to by p

Control Flow

* Conditional branching
¢ if, nested IF
* switch
* Looping
* for
* while
* do...while

Yapisal Programlama Dersi Notlari

33

The if...else statement

if (expression)

A 4

statement

Ex1:
if (x)

statementl; //executed only if x is nonzero
statement2; //always executed
Ex2:
if (x)

statementl; // executed only if x is nonzero
else

statement2; // executed only if x is zero

statement3; //always executed
Nested if statements
* Note that when an else is immediately if(a<b)
followed by an if, if(a<c)
« they are usually placed on the same line.
* this is commonly called an else if statement. return a;
else
* Nested if statements create the problem of return c;
matching each else phrase to the right if else if (b<c)
statement.
* This is often called the dangling else problem ! return b;
* An else is always associated with the nearest else
previous if.
return c;

Yapisal Programlama Dersi Notlari

34

The switch Statement

»0» expression) * The switch expression is
evaluated,

« if it matches one of the case
R labels, program flow

case . : continues with the statement
CXPresSSIon that follows the matching
case label.

If none of the case labels

match the switch expression,
program flow continues at
the default label, if exists!

! * No two case labels may have the

same value!

* The default label need not be the
last label, though it is good style
to put it last

I

The while Statement

* First the expression is
evaluated. If it is a nonzero
value, statement is executed.

—b'. expression
@ I * After statement is executed,

program control returns to the
top of the while statement,

,m, and the process is repeated.

* This continues indefinitely
until the expression evaluated
to zero.

Yapisal Programlama Dersi Notlari

35

The do...while Statement

->0 expression) H

* The only difference between a do..while and a regular while
loop is that the test condition is at the bottom of the loop.
* This means that the program always executes statement at least one.

I

The for Statement

« First, expression1 is evaluated.

* Then expression2 is evaluated.

 This is the conditional part of the
statement.

« If expression2 is false, program
control exists the for statement.

« If expression2 is true, the
statement is executed.

* After statement is executed,
expression expression3 is evaluated.

* Then the statement loops back to

test expression2 again.

Yapisal Programlama Dersi Notlari

36

NULL Statements

* |t is possible to omit one of the
expressions in a for loop, it is

also possible to omit the body
of the for |00p. for(c = getchar(); isspace(c); c = getchar());

* ATTENTION

* Placing a semicolon after the
test condition causes compiler if (j==1);
to execute a null statement j=0;
whenever the if expression is \
true

L O,
o 0

:\"V:

_

Nested Loops

* |t is possible to nest looping
statements to any depth
for(j=1;j<=10; j++) {

* However, keep that in mind /] outerloop

inner loops must finish before

the outer loops can resume printf(“%5d|”, j);
iterating for(k=1; k <=10; k++) {
* It is also possible to nest control printf(“%5d”, j*k);
and loop statements together. // inner loop

}

printf(“\n”);

Yapisal Programlama Dersi Notlari

37

break & continue & goto

* break
* We have already talked about it in switch statement
* When used in a loop, it causes program control jump to the statement
following the loop
* continue

* continue statement provides a means for returning to the top of a loop
earlier than normal.

* it is useful, when you want to bypass the reminder of the loop for some
reason.

* Please do NOT use it in any of your C programs.

* goto
* goto statement is necessary in more rudimentary languages!
* Please do NOT use it in any of your C programs.

—

Bu yansi ders notlarinin dizeni icin bog birakilmistir.

—

Yapisal Programlama Dersi Notlari

38

Preprocessor (Part I)

Structural Programming
by Z. Cihan TAYSI
Corrections & additions by Yunus Emre SELCUK

Outline

* Macro processing
* Macro substitution
* Removing a macro definition
* Macros vs. functions
* Built-in macros
* Conditional compilation
* Testing macro existence

* Include facility
* Line control

Yildrz Teknik Oniversitesi - Bilgisayar Mikendisligi BoLimi

Yapisal Programlama Dersi Notlari

39

Macros

* All preprocessor directives
begin with a pound sign (#),
which must be the first
nonspace character on the line

* Unlike C statements, a macro
command ends with a newline,
not a semicolon.

* to span a macro over more than
one line, enter a backslash
immediately before the newline

#define LONG_MACRO “This is a very long
macro that \

spans two lines”

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolami

Macro Substitution

* The simplest and most
common use of macros is to
represent numeric constant
values.

* Itis also possible to create char buf[BUFF_LEN];

function like macros

#define BUFF_LEN (512)

char buf[(512)];

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

40

Function Like Macros

* Be careful not to use
e’ at the end of macro
* or ‘=" in macro definition

Example 1:

#define MUL_BY_TWO(a) ((a) + (a))
* No type checking for macro
arguments j=MUL_BY_TWO(5);

f = MUL_BY_TWO(2.5);

* Try to expand min macro example

for three numbers
Example 2 :

#tdefine min(a, b) ((a) < (b) ? (a) : (b))

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolami

Side Effect

#define min(a,b) ((a) < (b) ? (a) : (b)) |* Remember min macro

a = min(b++, ¢); * Suppose, for instance, that
we invoked the min macro
like this!

a= ((b++)<(c) ? (b++) : (c)); « The preprocessor

translates this into !

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

Macros vs. Functions

Advantages Disadvantages
- M | d h i
* Macros are usually faster than I the it Body. which can Joad 5 unaxpected

behavior if an argument contains side effects!

functions, since they avoid the . > ; .
Function bodies are compiled once so that multiple

function call overhead calls to the same function can share the same code.
4 Macros, on the other hand, are expanded each time

they appear in a program.

* No type restriction is placed on * Though macros check the number of arguments,

arguments SO that one macro they don’t check the argument types.
may serve for several data | e A o,

additional layer of translation.

types.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Removing a Macro Definition

* Once defined a macro name
retains its meaning until the

end of the source file. #define FALSE 1
« or until it is expilicitly removed /* code requiring FALSE = 1*/
with an #undef directive.
/ #undef FALSE
* The most typical use of i
#undef is to remove a #define FALSE O
definition so you can /* code requiring FALSE = 0*/

redefine it.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

Built-in Macros — |

« LINE__

* expands to the source file line number on which it is invoked.

. FILE__

* expands to the name of the file in which it is invoked.

. TIME__

* expands to the time of program compilation.

« DATE__

* expands to the date of program compilation.

« STDC__

* Expands to the constant 1, if the compiler conforms to the ANSI Standard.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Built-in Macros — 11

void print_version() {

printf(“This utility
compiled on %s at %s\n”,

__DATE_,
__TIME_);

void print_version() {

printf(“This meesage is at
%d line in %s\n”,

__LINE__,
__FILE_);

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

43

Conditional Compilation—1

* The preprocessor enables you to screen out portions of source code
that you do not want compiled.
* This is done through a set of preprocessor directives that are similar to if and
else statements.
* The preprocessor versions are
* #if, ttelse, telif, #endif

* Conditional compilation particularly useful during the debugging
stage of program development, since you can turn sections of your
code on or off by changing the value of a macro

* Most compilers have a command line option that lets you define macros
before compilation begins.

¢ gcc —DDEBUG=1 test.c

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolimi

Conditional Compilation— I

* The conditional expression in an #if
or #elif statement need not be

enclosed in parenthesis. #if x==1
» Blocks of statements under the #undef %
control of a conditional #define X 0

preprocessor directive are not

enclosed in braces. #elif x ==

Every #if block may contain any #undef X
number of #elif blocks, but no #define X 3
more than one #else block, which

should be the last one! #else '
* Every #if block must end with an #define y 4
#endif directive! #endif

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

44

Conditional Compilation— Il

#if defined TEST #if defined (TEST)
#if defined macro_name #ifdef macro_name
#if !defined macro_name #ifndef macro_name

Yildiz Teknik Oniversitesi - Bilgisayar Mihendisligi Bolami

Include Facility

* The #include command has two forms
* #include <filename> : the preprocessor looks in a list of implementation-
defined places for the file. In UNIX systems, standard include files are often
located in the directory /usr/include
* #include “filename” : the preprocessor looks for the file according to the file
specification rules of operating system. If it can not find the file there, it
searches for the file as if it had been enclosed in angle brackets.

* The #include command enables you to create common definition
files, called header files, to be shared by several source files.
* Traditionally have a .h extention
* contain data structure definitions, macro definitions, function prototypes and
global data

Yildrz Teknik Oniversitesi - Bilgisayar Mihendisligi BoLlimi

Yapisal Programlama Dersi Notlari

45

Line Control

* Allows you to change compiler’s
knowledge of the current line
number of the source file and the
name of the source file.

* The #line feature is particularly
useful for programs that produce C
source text.

* For example yacc (Yet Another
Compiler Compiler) is a UNIX utility
that facilitates building compilers.

main() {
#line 100

printf(“Current line :%d\nFilename :

%s\n\n”, _ LINE_ , _ FILE_);
#line 200 “new name”

printf(“Current line :%d\nFilename :

%s\n\n”, _ LINE_ , _ FILE_);

* We will not delve into further detail.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendisligi Bolami

—

Bu yansi ders notlarinin dizeni icin bog birakilmistir.

Yapisal Programlama Dersi Notlari

46

Storage Classes

Structural Programming
by
Z. Cihan TAYSI

Outline

* Fixed vs. Automatic duration
* Scope

* Global variables

* The register specifier

* Storage classes

* Dynamic memory allocation

I

Yapisal Programlama Dersi Notlari

47

Fixed vs. Automatic Duration — |

* Scope is the technical term that denotes the region of the C source text in
which a name’s declaration is active.

* Duration describes the lifetime of a variable’s memory storage.

* Variables with fixed duration are guaranteed to retain their value even after their
scope is exited.

* There is no such guarantee for variables with automatic duration.

* A fixed variable is one that is stationary, whereas an automatic variable is
one whose memory storage is automatically allocated during program
execution.

* Local variables (whose scope limited to a block) are automatic by default.
However, you can make them fixed by using keyword static in the
declaration.

* The auto keyword explicitly makes a variable automatic, but it is rarely used
since it is redundant.

—

Fixed vs. Automatic Duration— Il

void increment (void) {

* Fixed variables initialized only once,

intj=1; whereas automatic variables are initialized
static int k= 1; each time their block is reentered.
g * The increment() function increments two
ke variables, j and k, both initialized to 1.
printf(“j : %d\t k:%d\n”, j, k); + j has automatic duration by default
} * k has fixed duration because of the static
main (void) { keyword

increment(); // j:2 k:2
increment(); //j:2 k:3
increment(); //j:2 k:4

_

Yapisal Programlama Dersi Notlari

Fixed vs. Automatic Duration— Il

void increment (void) { * When increment() is called the second
intj=1; time,
static int k = 1; * memory for j is reallocated and j is
4 reinitialized to 1.
Kt * k has still maintained its memory address and
’ is NOT reinitialized.
printf(“j : %d\t k:%d\n", j, k);

* Fixed variables get a default initial value of
zero.

}

main (void) {
increment();//j:2 k:2
increment();//j:2 k:3
increment();//j:2 k:4

—

Scope—|

* The scope of a variable determines the region over which you can
access the variable by name.

* There are four types of scope;

* Program scope signifies that the variable is active among different source
files that make up the entire executable program. Variables with program
scope are often referred as global variables.

* File scope signifies that the variable is active from its declaration point to the
end of the source file.

* Function scope signifies that the name is active from the beginning to the
end of the function.

* Block scope that the variable is active from its declaration point to the end of
the block which it is declared.

* A block is any series of statements enclosed in braces.
* This includes compound statements as well as function bodies.

_

Yapisal Programlama Dersi Notlari

Scope—Ii

inti; // Program scope

static int j; // File scope

func (int k) { // function scope
int m; // function scope
{

int n; // Block scope

Program Scope

File Scope

Function
Scopne

Block
Scope

Scope -l

foo (void) {
int j, ar[20];

{ // Begin debug code
intj; //This j does not conflict with other j's.

for(j=0; j <= 10; ++{
prigjtf(”‘%d\t”, ar[jﬂ);

L // End debug code...

 Avariable with a block scope can NOT be
accessed outside its block.

* Itjs also possible to declare a variable
within a nested block.

* can be used for debugging purposes. see
the code on the left side of the slide!

* Although variable hiding is useful in
situations such as these, it can also lead
to errors that are difficult to detect!

Yapisal Programlama Dersi Notlari

50

Scope— 1V

* Function scope
* The only names that have function scope are goto labels.

* Labels are active from the beginning to the end of a function.
* This means that labels must be unique within a function
« Different functions may use the same label names without creating conflicts

Scope-V

* File & Program scope
* Giving a variable file scope makes the variable active through out the rest of
the file.

« if a file contains more than one function, all of the functions following the declaration
are able to use the variable.

* To give a variable file scope, declare it outside a function with the static keyword.

* Variable with program scope, called global variables, are visible to routines in
other files as well as their own file.

* To create a global variable, declare it outside a function without static keyword

Yapisal Programlama Dersi Notlari

51

Global Variables

* In general, you should avoid using global variables as much as
possible!
* they make a program harder to maintain, because they increase complexity
* create potential for conflicts between modules
* the only advantage of global variables is that they produce faster code

* There are two types of declarations, namely, definition and allusion

* An allusion looks just like a definition, but instead of allocating
memory for a variable, it informs the compiler that a variable of the
specified type exists but is defined elsewhere.

e externint j;

* The extern keyword tells the compiler that the variables are defined
elsewhere.

—

The register Specifier

* The register keyword enables you to help the int strlen (register char *p)
compiler by giving it suggestions about which {
variables should be kept in registers.
* itis only a hint, not a directive, so compiler is free
to ignore it! register int len=0;
* The behavior is implementation dependent. while(*p++) {

* Since a variable declared with register might

never be assigned a memory address, it is len++;
illegal to take address of a register variable. }

* Atypical case to use register is when you use a return len;
counter in a loop. }

_

Yapisal Programlama Dersi Notlari

Storage classes summary

e auto
* superfluous and rarely used.

* static

In declarations within a function,
static causes variables to have
fixed duration. For variables
declared outside a function, the
static keyword gives the variable
file scope.

* extern

* For variables declared within a
function, it signifies a global
allusion. For declarations outside
of a function, extern denotes a
global definition.

* register
* It makes the variable automatic
but also passes a hint to the
compiler to store the variable in a
register whenever possible.

* const

* The const specifier guarantees
that you can NOT change the
value of the variable.

* volatile

* The volatile specifier causes the
compiler to turn off certain
optimizations. Useful for device
registers and other data segments
that can change without the
compiler’s knowledge.

—

Bu yansi ders notlarinin dizeni icin bog birakilmistir.

“

Yapisal Programlama Dersi Notlari

53

Pointers and Arrays

Structural Programming
by Z. Cihan TAYSI
Additions and corrections by Yunus Emre SELCUK

Outline

* Basics

* Declaration

* How arrays stored in memory

* Initializing arrays

* Accessing array elements through pointers
* Examples

* Strings

* Multi-dimensional arrays

I

Yapisal Programlama Dersi Notlari

54

Basics

#include <stdio.h>
int main(int argc, char *argv[]) {
short i,j; //short integers

short *p; //pointer to short

i = 123; //statement #1

j = 321; //statement #2

P = &i; //statement #3: p now shows the memory address of i

j = *p; //statement #4: * means: use the indirect (pointer) value of p

printf("i:%d j:%d", i, j);
i+4=2; j += 3; printf("i:%d j:%d", i, j); //statement #5

return 0;

}
What will happen?

Basics

Initial state: After statements 1-3:
Variable name / memory memory Variable name/ memory memory
symbolic name address contents symbolic name ~ address contents
i 1200 i 1200 123
j 1202 j 1202 321
p 1204 p 1204 1200

PS: 1200 is just my assumption. The exact address where these variables
will be held will be defined at runtime.

Yapisal Programlama Dersi Notlari

Basics

After statement 4: After statement 5:
Variable name / memory memory Variable name/ memory memory
symbolic name address contents symbolic name ~ address contents
i 1200 123 i 1200 125
j 1202 123 j 1202 126
p 1204 1200 p 1204 1200

—

Declaration

type array

specifier name om |] A

int dailyTemp[365];
dailyTemp[0] = 38;
dailyTemp[0] = 23;

* subscripts begin at 0, not 1!

_

Yapisal Programlama Dersi Notlari

56

How Arrays Stored in Memory

Element Address
int ar[5]; /* declaration */

ar[0] = 15; OXOFFC
arl] S, ar[0] 0x1000 15
ar[3] = ar[0] + ar[1];
G [0 o ar[1] 0x1004 17
* Note that ar[2] and ar[4] have ar[2] 0x1008 [EUCELES
undefined values! 32
. Ithe %pntents ofr;thtese MmO ar[3] 0x100C
ocations are whatever left over .
from the previous program ar[4] 0x1010 undefined

execution

0x1014

—

Initializing Arrays

e It is incorrect to enter more int a_ar[5];
initialization values than the : L Y
number of elements in the array !nt b_ar[>] ={1,2,3.5,4, 5\
intc_ar[5]={1, 2, 3};

* If you enter fewer initialization
values than elements, the
remaining elements initialized chard_ar[] ={%@, ‘b, ‘¢, ‘d’};
to zero.

* Note that 3.5 is converted to
the integer value 3!

* When you enter initial values,
you may omit the array size

* the compiler automatically figures
out how many elements are in
the array...

_

Yapisal Programlama Dersi Notlari

57

Accessing Array Elements Through Pointers

short ar[4]; float ar[5], *p;
short *p;
p=ar; // legal

p = & ar[0]; // assigns the address ar = p; // illegal
of array element 0 to p. &p = ar; // illegal
. gsziazr:es:trlne as above ar++; // illegal

—g—* ar[1] = *(p+3); // legal
* *(p+3) refers to the same

memory content as ar[3] Pt /1 legal

I

examples

* Bubble sort * Selection sort

6 53 187 2 4

NO PR aWWOONO ©

Yapisal Programlama Dersi Notlari

58

Strings

* A string is an array of characters
terminated by a null character.
* null character is a character with
a numeric value of 0

* it is represented in C by the
escape sequence ‘\0’

* A string constant is any series of

char str[] = “some text”;
char str[10] = “yes”;
char str[3] = “four”
char str[4] = “four”

quotes

characters enclosed in double

* char *ptr = “more text”;

« it has datatype of array of char
and each character in the string
takes up one byte!

—

main () {
char array[10];
char *ptr1="10 spaces”;
char *ptr2;
array = “not OK”;
array[5] = ‘A’;
array[0] = ‘'C’;
array[1] = \0’;
ptri[8] =‘r’;
*ptr2 = “not OK”;
ptr2="“0OK"”;

1in DevCPP4, linker gives warning at first but if you make a second attempt, it co

_

String Assignments

// can NOT assign to an address! Does not compile (©)
// Buggy! because: Array is not populated yet. So, ...

// ... Always begin from 0 and

// use null-terminated strings where necessary

// Buggy?! because: The entire string is not populated yet.
// Type mismatch warning. Does not compile (©)

Yapisal Programlama Dersi Notlari

59

Strings vs. Chars

Chars

charch =a’; // one byte is allocated for ‘a’
*p=1a’; /1 OK

p=‘a’; // lllegal

Strings

char *p = “a”; // two bytes allocated for “a”
*p="a"; // INCORRECT

p="“a”; // OK

—

Reading & Writing Strings

#include <stdio.h> * You can read strings with scanf()

#define MAX_CHAR 80 function.

int main(int argc,char *argv[]) { * the data argument should be a pointer to
char str[MAX CHAR]; an array of characters that is long enough

to store the input string.

* after reading input characters scanf()
automatically appends a null character to

printf ("Enter a string: ");
scanf ("%s",str) ;

printf ("\nYou wrote:"); make it a proper string
printf ("$s",str); * You can write strings with printf{)
return 0; function.

} * the data argument should be a pointer to

a null terminated array of characters

I

Yapisal Programlama Dersi Notlari

60

String Length Function

* We test each element of array,

one by one, until we reach the int strlLen(char *str) {
null character. int i=0;
« it has a value of zero, making the while(str[i] !'= '\0') {
while condition false i++;
* any other value of str[i] makes the }
while condition true return i;
* once the null character is }

reached, we exit the while loop
and return i, which is the last
subscript value

* The strlen function is already
defined in string.h, therefore
the function on the left is
named strLen

—

Other String Functions Defined in string.h

* char* strcpy(char* szCopyTo, const char* szSource)

* char* strncpy(char* szCopyTo, const char* szSource, size_t sizeMaxCopy)
* char* strcat(char* szAddTo, const char* szAdd)

* char* strncat(char* szAddTo, const char* szAdd, size_t sizeMaxAdd)

* int strcmp(const char* sz1, const char* sz2)

* int strncmp(const char* sz1, const char* sz2, size_t sizeMaxCompare)

* etc

* You can look them up in the string.h file and in any C book/site

_

Yapisal Programlama Dersi Notlari

