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INTEREST POINT DETECTION
CORNER DETECTION




Histograms of Oriented Gradients for Human Detection
N.Dalaland B.Triggs CVPR 2005

Detecting humans in images is a challenging task owing to
their variable appearance and the wide range of poses
that they can adopt. The first need is a robust feature set
that allows the human form to be discriminated cleanly,
even Iin cluttered backgrounds under difficult illumination

The feature sets fohuman detection showing that

locally normalized Histogram of Oriented Gradient (HOG)
descriptors provide excellent performance relative to
other existing feature sets including wavelets



HOG feature extraction steps

1. Compute centered horizontal and vertical gradients with no smoothing

2. Compute gradient orientation and magnitudes
C For color image, pick the color channel with the highest gradient magnitude forpeeah

3. For a 64x128 image,

4. Divide the image into 16x16 blocks of 50% overlap.
C 7x15=105 blocks in total

5. Each block should consist of 2x2 cells with size 8x8.

6. Quantize the gradient orientation into 9 bins
C The vote is the gradient magnitude
C Interpolate votes blinearly between neighboring bin center.
C The vote can also be weighted with Gaussian to downweight the pixels near theddbedlock.

7. Concatenate histograms (Feature dimension: 105x4x9 = 3,780)



1- Computing Gradients
2- Compute Gradient Magnitude and Orientation

 Centered: f(x) = limy_o, (f(x+h)_f(x_h))

2h

) Filter masks in x and y directions
Centered:

] Gradient

COMagnitude: M = [s2 + s2

S
COrientation: @ = arctan(s—y)
X




4- Divide Image into Blocks
5- Divide Blocks into Cells

For a 64x128 Image

A Dividel16x16 blocks of 50% overlap.
7x15=105 blocks in total

A Each block should consist of 2x2
cells with size 8x8.

B1 B2




6- Quantize the Gradient Orientation into 9 bins

Each block consists of 2x2 cells vatie 8x8 100 __ 80

120 60
C Quantize the gradient orientation intol@ins 140 a0
(0-180) 160 20
C The vote Is the gradient magnitud&erpolate 4, 0

votes linearly between neighboring boenters.

Example: if T ydegrees.

Distance to the bin cen¢ Bin 70 and Bin 9%re 15
and 5 degrees, respectively.

Hence, ratios are 5/20=1/4, 15/20=3/4.
The vote can also be weighted with Gaussian to

downweight the pixels near the edges of the I | il
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/- Concatenation of Histograms and
Normalization

BLOCK CELL
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v(n) _\/ 23235\9/(n) Ll.ln“l

238 s
=33




Final Feature Vector

C Concatenate histograms
C Make it a 1D matrix of length 3780.

C Visualization




Results
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Example of Using HOG

HOG can represent a rough shape of the object, so that it
has been used for general object recognition, such as

people or cars.

In order to achieve the general object recognition, the

classifier (eg SVM) is be used.
1. To teach the classifier, the correct image and the incorrect
Image.
2. Scan the classifier to determine whether there are people in the
detection window.



SVM Classifier

SVM divides space into two domains according to a teacher signal.

New examples are predicted to belong to a category based on which
side of the gap domain.




%matplotlib inline

import matplotlib.pyplot as plt

from skimage.feature import hog
from skimage import data, exposure

from skimage.color import rgh2gray

imagel = data.astronaut()

image=rgb2gray(imagel)

print(image.shape)

fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16),cells_per_block=(1, 1), visualise=True )
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8), sharex=True, sharey=True)
axl.axis('off")

axl.imshow(image, cmap=plt.cm.gray)

axl.set_title('Input image")

# Rescale histogram for better display

hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 10))
ax2.axis('off")

ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)

ax2.set_title("Histogram of Oriented Gradients')




Interest Point Detection

Local features: main components

1) Detection: Identify the interest points

2) Description :Extract feature vector
descriptor surrounding each interest point.

3) Matching: Determine correspondence
between descriptors in two views




Interest Operator Repetabllity

We want to detect (at least some of) tisame points in both images.
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per image.



What 1s an Interest Point

Expressive texture

The point at which the direction of tHeoundary of object changes
abruptly
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Synthetic and Real Interest Points

Corners are indicated in red



Properties of Interest Point Detectors

C Detect all (or most) true interest points

C No false interest points

C Well localized.

C Robust with respect to noise.
C Efficient detection




Harris Corner Detector

C Corner point can be recognized in a window

C Shifting a window in any direction should gavéarge change in
Intensity




Harris Detector: Basic ldea
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Harris Detector : Mathematics
Change of intensity for the shifi M:

Window Shifted
function intensity

Window functionW(X,y)=

1 in window, O outside Gaussian



Harris Detector: Mathematics

For small shift§u,V] we have ailinear approximation:

whereM is a 2 2 matrix computed from image derivatives:




Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analy

direction of the
fastest change

direction of the
slowest change

Ellipse E(u,v)= const



Harris Detector: Mathematics

Classification of P
Image points using
eigenvalues oM:




from matplotlib import pyplot as plt

from skimage import data

from skimage.feature import corner_harris, corner_subpix, corner_peaks
from skimage.transform import warp, AffineTransform

from skimage.draw import ellipse

tform = AffineTransform(scale=(1.3, 1.1), rotation=1, shear=0.7, translation=(210, 50))
image = warp(data.checkerboard(), tform.inverse, output_shape=(350, 350))
rr, cc = ellipse(310, 175, 10, 100)

image(rr, cc] =1

image[180:230, 10:60] =1

image[230:280, 60:110] =1

coords = corner_peaks(corner_harris(image), min_distance=5)
coords_subpix = corner_subpix(image, coords, window_size=13)

fig, ax = plt.subplots()

ax.imshow(image, interpolation="nearest', cmap=plt.cm.gray)
ax.plot(coords[:, 1], coords[:, 0], ".b', markersize=3)

ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15)

ax.axis((0, 350, 350, 0))




Deep Learning

Traditional
Input  — g:;au;gr —»| Features ML —{ Output
Algorithm

Traditional Machine Learning Flow

Input  [—> Deep Learning Algorithm —| Output

Deep Learning Flow



Feature Extraction by using
Convolutional Neural NetwofBNN

C3: 1. maps 16@10x10
C1: feature maps 54:1. maps 16@5x5
INPUT
6@28x28
§2. f. maps

32x32 4
6@14x14

C5: layer pp.
20 Tl QuTPUT

|
‘ ‘ Full conAecﬁon ‘ (Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

CNN called LeNet by Yann LeCun (1998)



Convolutional Neural Network&NN

C Consider learning an image
C Some patterns are much smaller than the whole image




