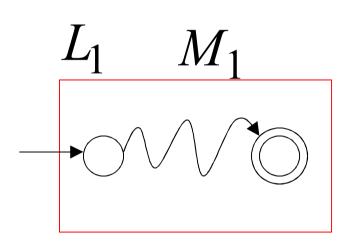
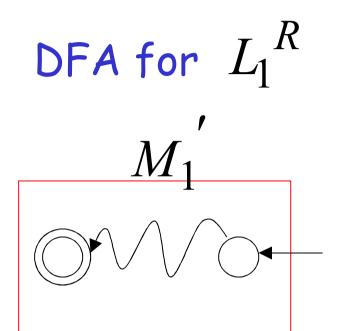
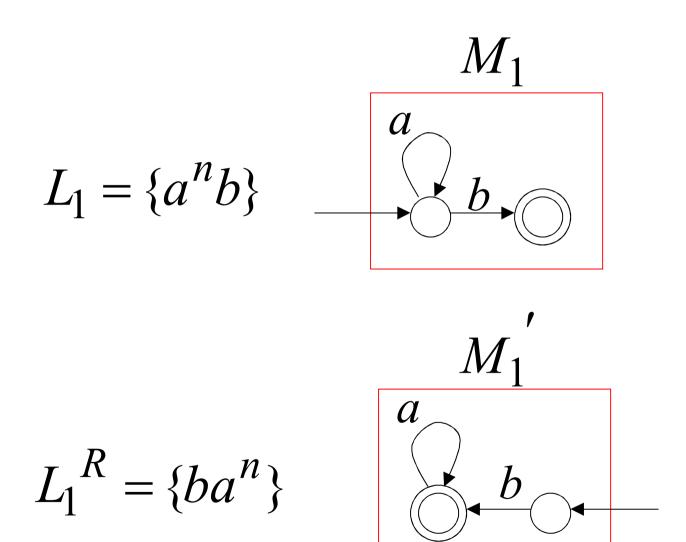
Reverse



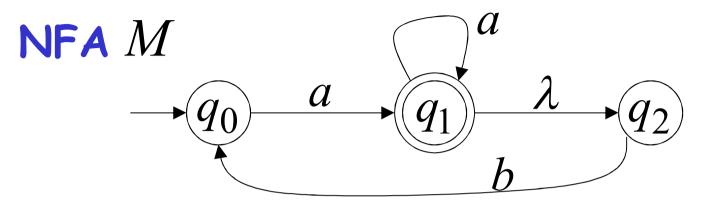


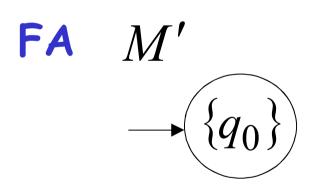
- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa

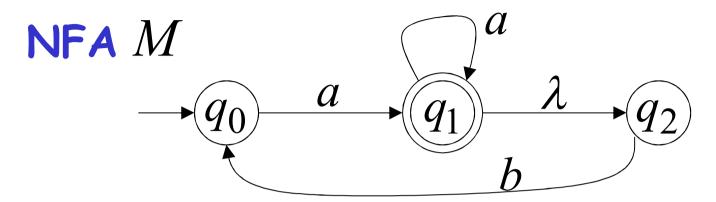
Example

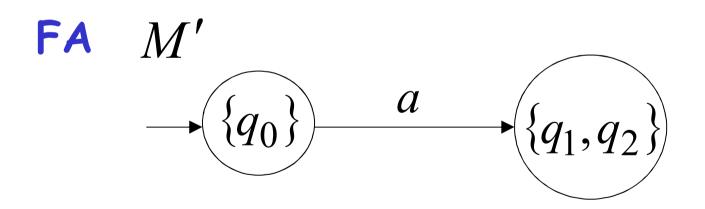


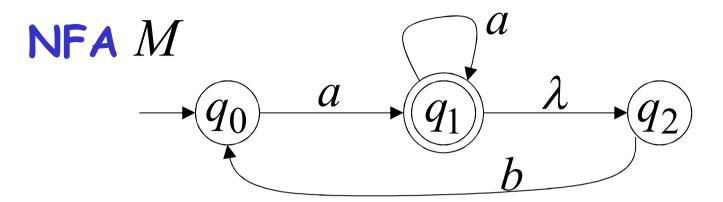
Convert NFA to FA(DFA)

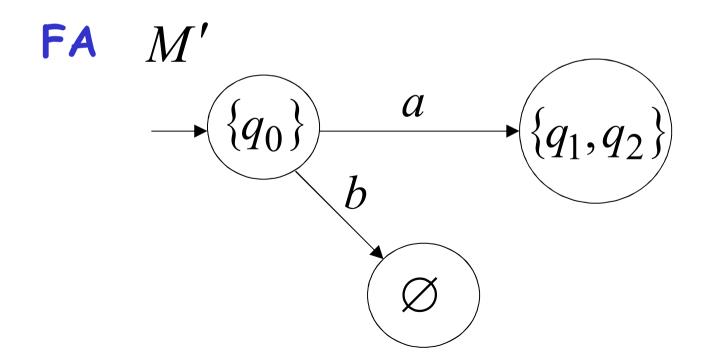


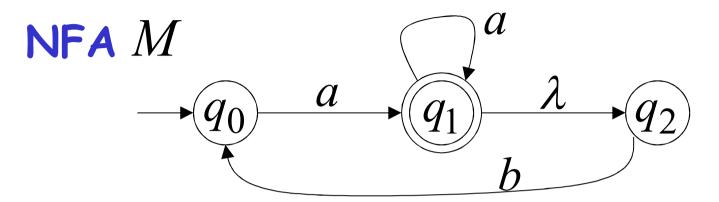


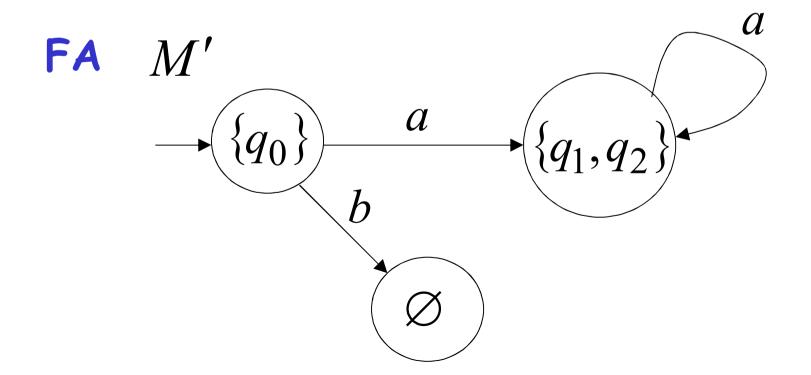


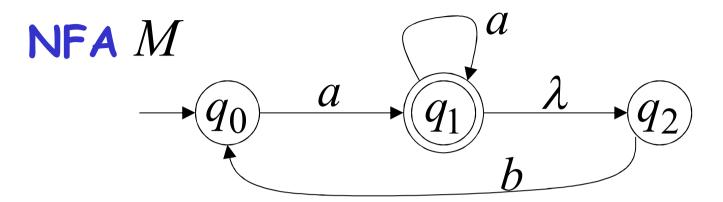


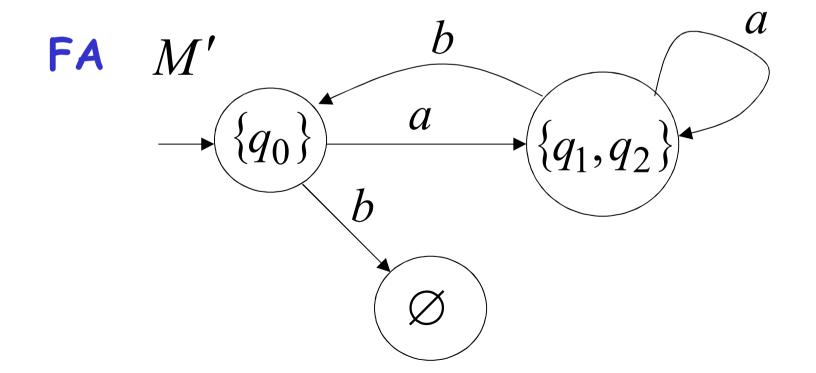


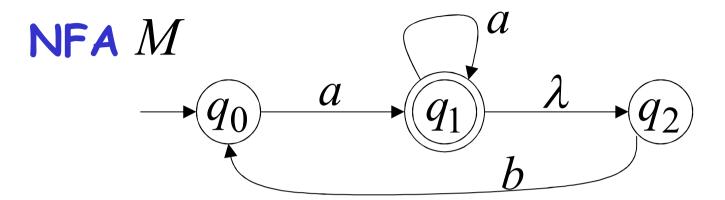


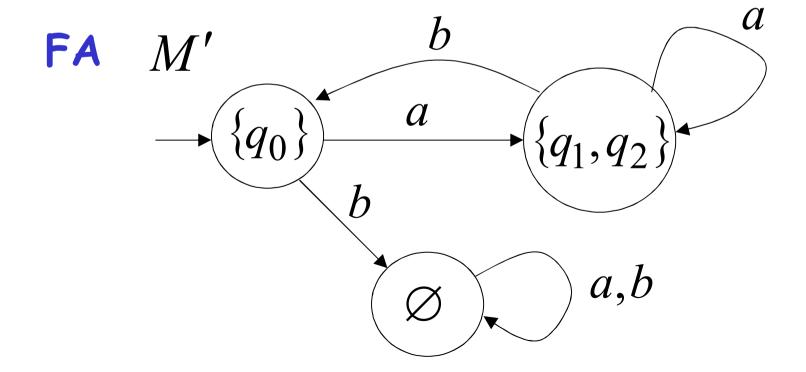


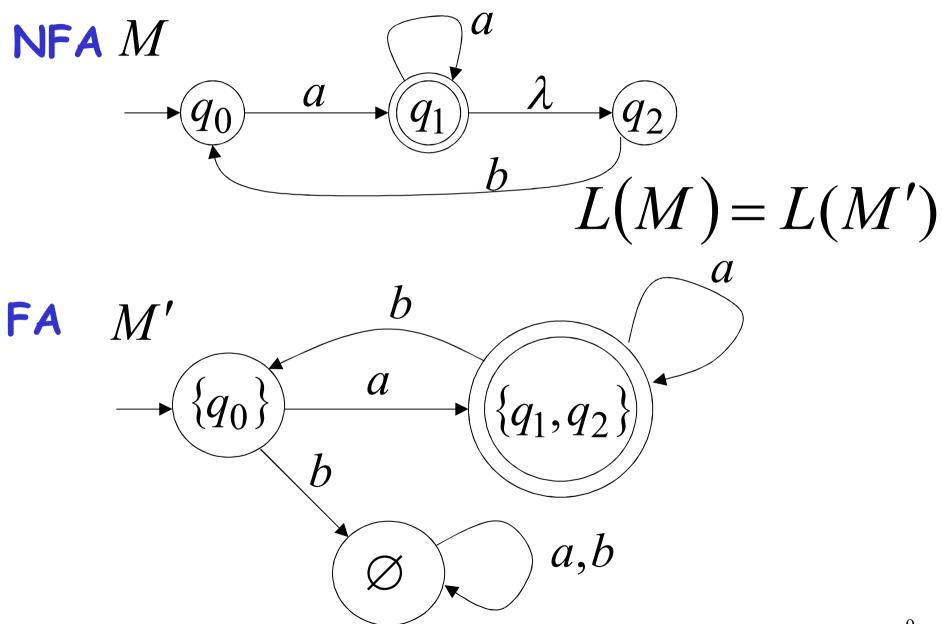












NFA to FA Conversion

We are given an NFA $\,M\,$

We want to convert it to an equivalent ${\sf FA} \ M'$

With
$$L(M) = L(M')$$

What we need to construct

Finite Automaton (FA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F: set of accepting states

If the NFA has states

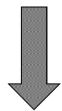
$$q_0, q_1, q_2, \dots$$

the FA has states in the power set

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

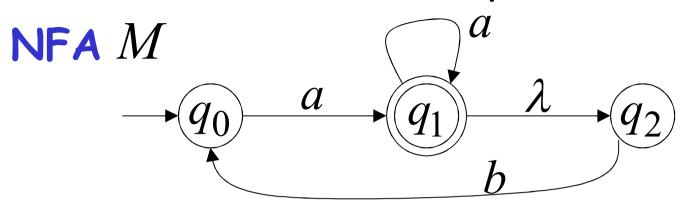
Procedure NFA to FA

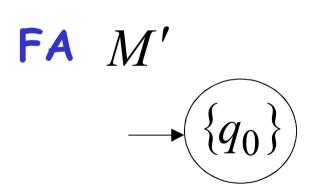
1. Initial state of NFA: q_0



Initial state of FA: $\{q_0\}$

Example





Procedure NFA to FA

2. For every FA's state $\{q_i, q_i, ..., q_m\}$

$$\{q_i, q_j, ..., q_m\}$$

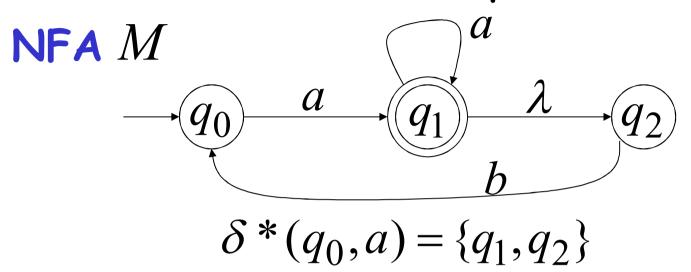
Compute in the NFA

$$\left.\begin{array}{l} \delta * (q_i, a), \\ \delta * (q_j, a), \end{array}\right\} = \left.\{q_i', q_j', ..., q_m'\right\}$$

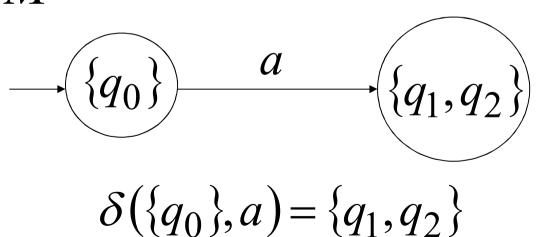
Add transition to FA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_i,q'_j,...,q'_m\}$$

Example



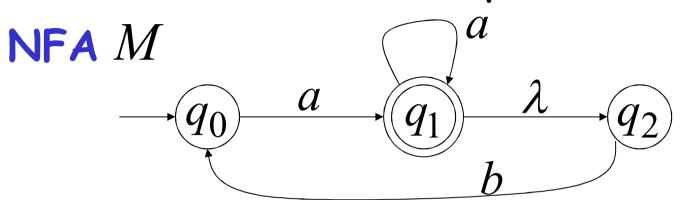
FA M'

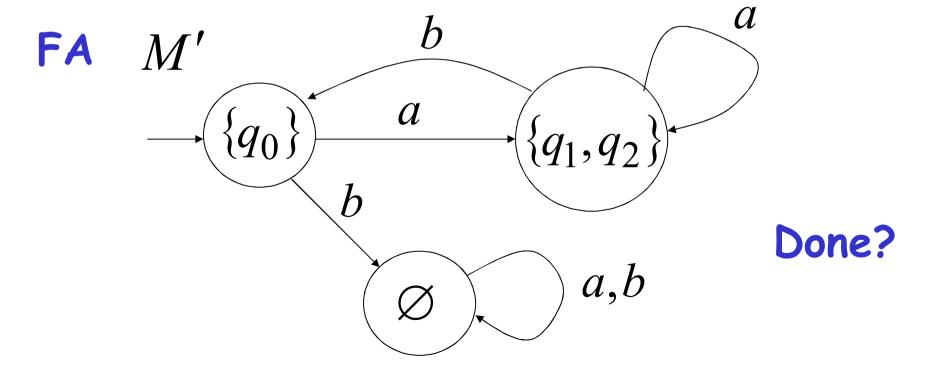


Procedure NFA to FA

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

Example





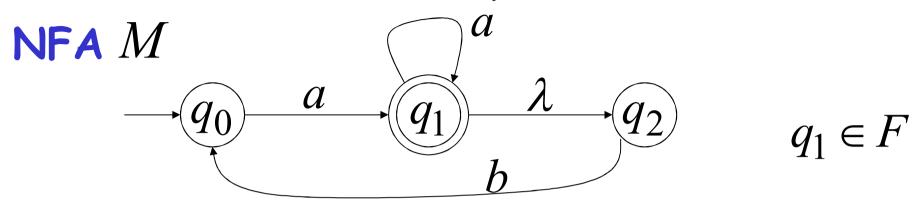
Procedure NFA to FA

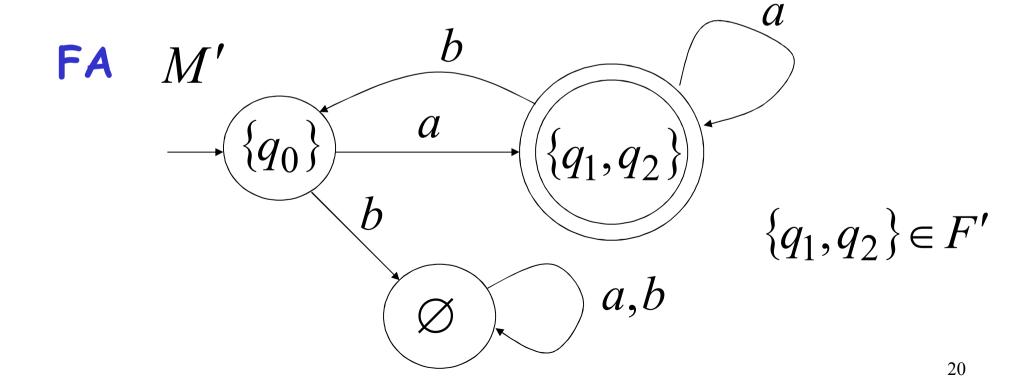
3. For any FA state $\{q_i, q_j, ..., q_m\}$

If q_j is accepting state in NFA

Then,
$$\{q_i,q_j,...,q_m\}$$
 is accepting state in FA

Example





Regular Expressions

- Another type of language-defining notation
- Algebraic description
- Declarative way to express desired strings
- RE: Input language for many string processing systems
- $01^* + 10^*$
- Lang= $\{x: x \text{ is } 0y \text{ or } x \text{ is } 1z, y=1* \text{ and } z=0*\}$

Operators of REs

- Given two languages, L={001, 10, 111} and M= {ε, 001}
- union: LUM
- concatenation: LM or L.M
- Closure (star or Kleene closure) of L: L* L={0, 11} then L⁰, L¹=L, L²

Building REs

Algebra

- Some basic expr; usually consts &/ vars
- More exprs by applying operators to basic expr
- Grouping, like paranthesis ()

• REs: same

- Basis: 3 parts
 - Constants; empty string and empty set
 - a any symbol, then a is re, {a}
 - Var L representing any lang
- Induction: 4 parts (If E, F: REs)
 - E + F is RE, denoting the union of L(E) and L(F)
 - EF is RE, denoting the concatenation of L(E) and L(F)
 - E* is RE, denoting the closure of L(E)
 - (E) is RE, denoting the same language as E

Examples

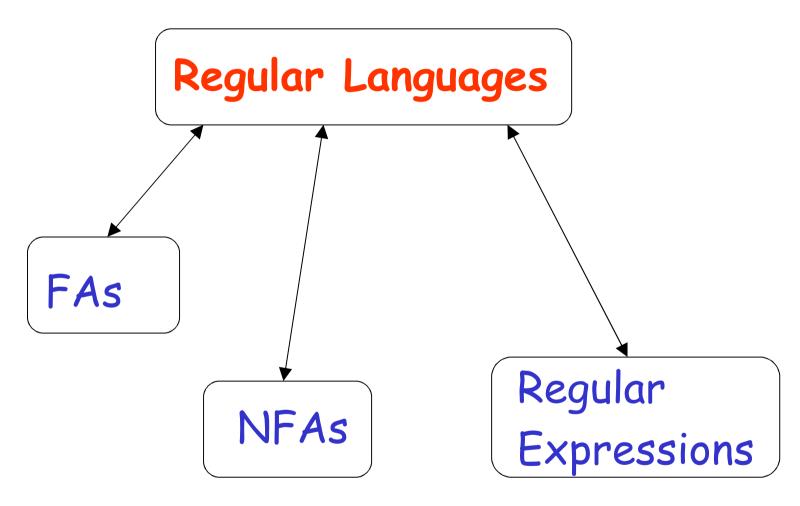
- Strings of alternating 0s and 1s
 - -0, 1, 01, (01)*
 - 10, (10)*****
 - **-** 1(01)*
 - -0(10)*

RE1:
$$(01)^* + (10)^* + 1(01)^* + 0(10)^*$$

RE2:
$$(\epsilon + 1) (01)^* (\epsilon + 0)$$

- Precedence (of RE operators)
 - Star, *
 - Concatenation or dot, .
 - Union, U
- $01*+1 \equiv (0(1*))+1$
- String 1 or all strings consisting of a 0 followed by any number of 1's (including none)

Standard Representations of Regular Languages



When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

Elementary Questions

about

Regular Languages

Membership Question

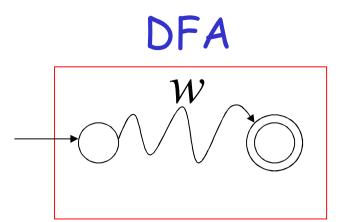
Question: Given regular language L and string w how can we check if $w \in L$?

Membership Question

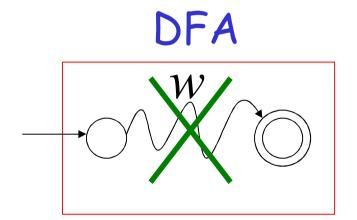
Question: Given regular language L and string w

how can we check if $w \in L$?

Answer: Take the DFA that accepts L and check if w is accepted



$$w \in L$$



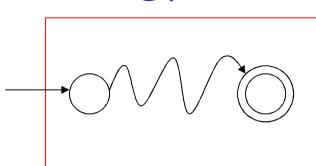
 $w \notin L$

Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

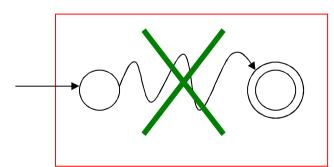
Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state



$$L \neq \emptyset$$



$$L = \emptyset$$

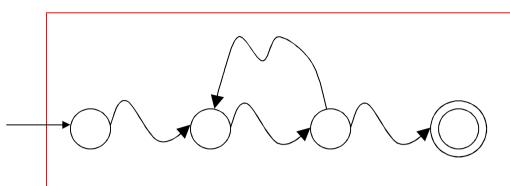
Question: Given regular language L how can we check if L is finite?

Question: Given regular language L how can we check if L is finite?

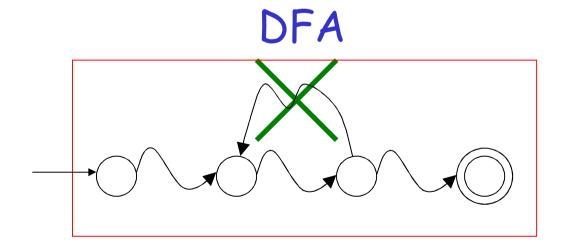
Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA



L is infinite



L is finite

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

$$(L_{1} \cap \overline{L_{2}}) \cup (\overline{L_{1}} \cap L_{2}) = \emptyset$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{1} \cap \overline{L_{2}} = \emptyset \quad \text{and} \quad \overline{L_{1}} \cap L_{2} = \emptyset$$

$$(L_{1}) \quad L_{2} \quad \overline{L_{2}} \quad (L_{2}) \quad L_{1} \quad \overline{L_{1}}$$

$$L_{1} \subseteq L_{2} \quad L_{2} \subseteq L_{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{1} = L_{2}$$

$$(L_{1} \cap \overline{L_{2}}) \cup (\overline{L_{1}} \cap L_{2}) \neq \emptyset$$

$$\downarrow L_{1} \cap \overline{L_{2}} \neq \emptyset \quad \text{or} \quad \overline{L_{1}} \cap L_{2} \neq \emptyset$$

$$\downarrow L_{1} \quad L_{2} \qquad \qquad L_{2} \not\subset L_{1}$$

$$\downarrow L_{1} \neq L_{2}$$

$$\downarrow L_{1} \neq L_{2}$$

Regular Langs

- Languages accepted by DFA's
- Languages accepted by NFA's
- Languages accepted by λ-NFA
- Languages defined by REs

• Note:

Not every language is a regular language.