
CONTEXT-AWARENESS
BLM5134 – Week 2

What is Context-Awareness?
•  desktop applications

• web applications

• mobile computing

•  pervasive/ubiquitous computing

IoT and Sensor Networks
•  Sensors

•  powerful
•  cheaper
•  smaller in size

•  IoT
•  billions of sensors are connected

•  to the Internet

•  Big Data

•  Middleware solutions

What is Middleware?
• Middleware is a software layer that stands between the

networked operating system and the application and
provides well known reusable solutions to frequently
encountered problems like heterogeneity, inter-
operability, security, dependability.

Middleware Solutions for IoT
•  device management

•  interoperability

•  platform portability

•  context-awareness

•  security and privacy

Evolution of Internet
416 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

��������	
��	�
����	
��	�
��
���� ����������������������

����

����

���� ����

����

����

���

����

���� ����

����

���	
�
���	�

���	
�
���	�

���	
�
���	�

���	
�
���	�

�	
��	�
������	��

�������������������

����

���� ����

����

���	
�
���	�

���	
�
���	�

����
�

����
�

Fig. 1. Evolution of the Internet in five phases. The evolution of Internet begins with connecting two computers together and then moved towards creating
World Wide Web by connecting large number of computers together. The mobile-Internet emerged by connecting mobile devices to the Internet. Then, peoples’
identities joined the Internet via social networks. Finally, it is moving towards Internet of Things by connecting every day objects to the Internet.

A. Evolution of Internet

Before we investigate the IoT in depth, it is worthwhile
to look at the evolution of the Internet. In the late 1960s,
communication between two computers was made possible
through a computer network [17]. In the early 1980s the
TCP/IP stack was introduced. Then, commercial use of the
Internet started in the late 1980s. Later, the World Wide Web
(WWW) became available in 1991 which made the Internet
more popular and stimulate the rapid growth. Web of Things
(WoT) [18], which based on WWW, is a part of IoT.

Later, mobile devices connected to the Internet and formed
the mobile-Internet [19]. With the emergence of social net-
working, users started to become connected together over the
Internet. The next step in the IoT is where objects around us
will be able to connect to each other (e.g. machine to machine)
and communicate via the Internet [20]. Figure 1 illustrates the
five phases in the evolution of the Internet.

B. What is the Internet of Things?

During the past decade, the IoT has gained significant
attention in academia as well as industry. The main reasons
behind this interest are the capabilities that the IoT [22], [23]
will offer. It promises to create a world where all the objects
(also called smart objects [24]) around us are connected to
the Internet and communicate with each other with minimum
human intervention [25]. The ultimate goal is to create ‘a
better world for human beings’, where objects around us know
what we like, what we want, and what we need and act
accordingly without explicit instructions [26].

The term ‘Internet of Things’ was firstly coined by Kevin
Ashton [27] in a presentation in 1998. He has mentioned
“The Internet of Things has the potential to change the
world, just as the Internet did. Maybe even more so”. Then,
the MIT Auto-ID centre presented their IoT vision in 2001
[28]. Later, IoT was formally introduced by the International
Telecommunication Union (ITU) by the ITU Internet report
in 2005 [29].

The IoT encompasses a significant amount of technologies
that drive its vision. In the document, Vision and challenges
for realising the Internet of Things, by CERP-IoT [4], a
comprehensive set of technologies was listed. IoT is a very
broad vision. The research into the IoT is still in its infancy.
Therefore, there aren’t any standard definitions for IoT. The
following definitions were provided by different researchers.
• Definition by [30]: “Things have identities and virtual
personalities operating in smart spaces using intelligent
interfaces to connect and communicate within social, en-
vironment, and user contexts.”

• Definition by [20]:“The semantic origin of the expression is
composed by two words and concepts: Internet and Thing,
where Internet can be defined as the world-wide network
of interconnected computer networks, based on a standard
communication protocol, the Internet suite (TCP/IP), while
Thing is an object not precisely identifiable Therefore, se-
mantically, Internet of Things means a world-wide network
of interconnected objects uniquely addressable, based on
standard communication protocols.”

• Definition by [21]: “The Internet of Things allows people
and things2 to be connected Anytime, Anyplace, with Any-
thing and Anyone, ideally using Any path/network and Any
service.”
We accept the last definition provided by [21] for our

research work, because we believe, this definition encapsulates
the broader vision of IoT. Figure 2 illustrates the definition
more clearly. The broadness of IoT can be identified by
evaluating the application domains presented in Section II-C.

C. IoT Application Domains
The IoT, interconnection and communication between ev-

eryday objects, enables many applications in many domains.
The application domain can be mainly divided in to three cat-
egories based on their focus [23], [4]: industry, environment,

2We use both terms, ‘objects’ and ‘things’ interchangeably to give the same
meaning as they are frequently used in IoT related documentation. Some other
terms used by the research community are ‘smart objects’, ‘devices’, ‘nodes’.

Definitions of IoT
•  “Things have identities and virtual personalities operating

in smart spaces using intelligent interfaces to connect and
communicate within social, environment, and user
contexts.”

Definitions of IoT
•  “The semantic origin of the expression is composed by

two words and concepts: Internet and Thing, where
Internet can be defined as the world-wide network of
interconnected computer networks, based on a standard
communication protocol, the Internet suite (TCP/IP), while
Thing is an object not precisely identifiable Therefore,
semantically, Internet of Things means a world-wide
network of interconnected objects uniquely addressable,
based on standard communication protocols.”

Definitions of IoT
•  “The Internet of Things allows people and things2 to be

connected Anytime, Anyplace, with Any- thing and
Anyone, ideally using Any path/network and Any service.”

PERERA et al.: CONTEXT AWARE COMPUTING FOR THE INTERNET OF THINGS: A SURVEY 417

��������
���

	
���

�������

�����������

����
���
����������

�����������
����

�����

������
�������

�������
�����������

���������
����
���

Fig. 2. Definition of the Internet of Things: The Internet of Things allows
people and things to be connected anytime, anyplace, with anything and
anyone, ideally using any path/network and any service [21].

and society. The magnitude of the applications can be seen in
the statistics presented in Section II-D.

Supply chain management [31], transportation and logis-
tics [32], aerospace, aviation, and automotive are some of
the industry focused applications of IoT. Telecommunication,
medical technology [33], healthcare, smart building, home
[34] and office, media, entertainment, and ticketing are some
of the society focused applications of IoT. Agriculture and
breeding [35], [36], recycling, disaster alerting, environmental
monitoring are some of the environment focused applications.

Asin and Gascon [37] listed 54 application domains under
twelve categories: smart cities, smart environment, smart wa-
ter, smart metering, security and emergencies, retail, logistics,
industrial control, smart agriculture, smart animal farming,
domestic and home automation, and eHealth.

D. IoT Related Statistics
The vision of the IoT is heavily energised by statistics and

predictions. We present the statistics to justify our focus on
the IoT and to show the magnitude of the challenges. It is
estimated that there about 1.5 billion Internet-enabled PCs and
over 1 billion Internet-enabled mobile phones today. These
two categories will be joined with Internet-enabled devices
(smart objects [24])) in the future. By 2020, there will be 50
to 100 billion devices connected to the Internet [4].

According to BCC Research [38], the global market for
sensors was around $56.3 billion in 2010. In 2011, it was
around $62.8 billion. Global market for sensors is expected
to increase to $91.5 billion by 2016, at a compound annual
growth rate of 7.8%.

E. The Essential Component of IoT: Sensor Networks
We provide a brief introduction to sensor networks in this

section as it is the most essential component of the IoT. A
sensor network comprises one or more sensor nodes, which

communicate between themselves using wired and wireless
technologies. In sensor networks, sensors can be homogeneous
or heterogeneous. Multiple sensor networks can be connected
together through different technologies and protocols. One
such approach is through the Internet. The components and
the layered structure of a typical sensor network are discussed
in Section II-F.

We discuss how sensor networks and the IoT work together
in Section II-G. However, there are other technologies that
can complement the sensing and communication infrastructure
in IoT paradigm such as traditional ad-hoc networks. These
are clearly a different technology from sensor networks and
have many weaknesses. The differences are comprehensively
discussed in [39].

There are three main architectures in sensor networks: flat
architecture (data transfers from static sensor nodes to the sink
node using a multi-hop fashion), two-layer architecture (more
static and mobile sink nodes are deployed to collect data from
sensor nodes), and three-layer architecture (multiple sensor
networks are connected together over the Internet). Therefore,
IoT follows a three-layer architecture.

Most of the sensors deployed today are wireless. There
are several major wireless technologies used to build wireless
sensor networks: wireless personal area network (WPAN) (e.g.
Bluetooth), wireless local area network (WLAN) (e.g. Wi-Fi),
wireless metropolitan area network (WMAN) (e.g. WiMAX),
wireless wide area network (WWAN) (e.g. 2G and 3G net-
works), and satellite network (e.g. GPS). Sensor networks
also use two types of protocols for communication: non-IP
based (e.g: Zigbee and Sensor-Net) and IP-based protocols
(NanoStack, PhyNet, and IPv6).

The sensor network is not a concept that emerged with
the IoT. The concept of a sensor network and related re-
search existed a long time before the IoT was introduced.
However, sensor networks were used in limited domains to
achieve specific purposes, such as environment monitoring
[40], agriculture [35], medical care [41], event detection [42],
structural health monitoring [43], etc. Further, there are three
categories of sensor networks that comprise the IoT [44]: body
sensor networks (BSN), object sensor networks (OSN), and
environment sensor networks (ESN).

Molla and Ahamed [8] identified ten challenges that need
to be considered when developing sensor network middle-
ware solutions: abstraction support, data fusion, resource con-
straints, dynamic topology, application knowledge, program-
ming paradigm, adaptability, scalability, security, and QoS
support. A comparison of different sensor network middleware
solutions is also provided based on the above parameters.
Several selected projects are also discussed in brief in order
to discover the approaches they take to address various chal-
lenges associated with sensor networks.

Some of the major sensor network middleware approaches
are IrisNet, JWebDust, Hourglass, HiFi, Cougar, Impala,
SINA, Mate, TinyDB, Smart Object, Agilla, TinyCubus,
TinyLime, EnviroTrack, Mires, Hood, and Smart Messages.
Some of the above approaches are surveyed in [8], [45].
A survey on web based wireless sensor architectures and
applications is presented in [46].

IoT App Categories

IoT App Categories

Sensor Networks

418 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

��������	
��	�

������������

	
��

��	������
���������
�

����������
	
��

������	��
�����
�
��	���
��������

�����	��
�����
�
��	���
��������

��	��
�����

������	��
��	����
�����

�����	��
��	����
������

������� ������� ������� ������� ��������������

Fig. 3. Layered structure of a sensor network: These layers are identified based on the capabilities posed by the devices. In IoT, this layered architecture
may have additional number of sub layers as it is expected to comprises large verity of in sensing capabilities.

F. Layers in Sensor Networks

We have presented a typical structure of a sensor network
in Figure 3. It comprises the most common components in a
sensor network. As we have shown, with the orange coloured
arrows, data flows from right to left. Data is generated by
the low-end sensor nodes and high-end sensor nodes. Then,
data is collected by mobile and static sink nodes. The sink
nodes send the data to low-end computational devices. These
devices perform a certain amount of processing on the sensor
data. Then, the data is sent to high-end computational devices
to be processed further. Finally, data reaches the cloud where
it will be shared, stored, and processed significantly.

Based on the capabilities of the devices involved in a sensor
network, we have identified six layers. Information can be
processed in any layer. Capability means the processing, mem-
ory, communication, and energy capacity. Capabilities increase
from layer one to layer six. Based on our identification of
layers, it is evident that an ideal system should understand the
capability differences, and perform data management accord-
ingly. It is all about efficiency and effectiveness. For example,
perform processing in the first few layers could reduce data
communication. However, devices in the first few layers do
not have a sufficient amount of energy and processing power
to do comprehensive data processing [47]. IoT research needs
to find more efficient and effective ways of data management,
such as collecting, modelling, reasoning, distributing.

G. Relationship Between Sensor Networks and IoT

In earlier sections we introduced both IoT and sensor
network concepts. In this section we explain the relation-
ship between the two concepts. Previously, we argued that
sensor networks are the most essential components of the
IoT. Figure 4 illustrates the big picture. The IoT comprises
sensors and actuators. The data is collected using sensors.
Then, it is processed and decisions are made. Finally, actuators
perform the decided actions. This process is further discussed
in Section IV. Further, integration between wireless sensor
networks and the IoT are comprehensively discussed in [48].
The difference between sensor networks (SN) and the IoT is
largely unexplored and blurred. We can elaborate some of the
characteristics of both SN and IoT to identify the differences.

• SN comprises of the sensor hardware (sensors and ac-
tuators), firmware and a thin layer of software. The IoT
comprises everything that SN comprises and further it com-
prises a thick layer of software such as middleware systems,
frameworks, APIs and many more software components. The
software layer is installed across computational devices (both
low and high-end) and the cloud.

• From their origin, SNs were designed, developed, and used
for specific application purposes, for example, detecting bush
fire [44]. In the early days, sensor networks were largely
used for monitoring purposes and not for actuation [49]. In
contrast, IoT is not focused on specific applications. The
IoT can be explained as a general purpose sensor network
[50]. Therefore, the IoT should support many kinds of
applications. During the stage of deploying sensors, the IoT
would not be targeted to collect specific types of sensor
data, rather it would deploy sensors where they can be used
for various application domains. For example, company may
deploy sensors, such as pressure sensors, on a newly built
bridge to track its structural health. However, these sensors
may be reused and connect with many other sensors in
order to track traffic at a later stage. Therefore, middleware
solutions, frameworks, and APIs are designed to provide
generic services and functionalities such as intelligence,
semantic interoperability, context-awareness, etc. that are
required to perform communication between sensors and
actuators effectively.

• Sensor networks can exist without the IoT. However, the IoT
cannot exist without SN, because SN provides the majority
of hardware (e.g. sensing and communicating) infrastructure
support, through providing access to sensors and actuators.
There are several other technologies that can provide ac-
cess to sensor hardware, such as wireless ad-hoc networks.
However, they are not scalable and cannot accommodate
the needs of the IoT individually [39], though they can
complement the IoT infrastructure. As is clearly depicted
in Figure 4, SN are a part of the IoT. However, the IoT is
not a part of SN.

H. Characteristics of the IoT
In Section II-G, we highlighted the differences between sen-

sor networks and the IoT. Further, we briefly explore the char-

Relationship between Sensor Networks
and IoT

PERERA et al.: CONTEXT AWARE COMPUTING FOR THE INTERNET OF THINGS: A SURVEY 419

���������	
������������������������������

�����
�����������
�����������

������	���

�����

��������

�	����
�����������

��	����	���������

������� ��	��	���

���
���

Fig. 4. Relationship between sensor networks and IoT.

acteristics of the IoT from a research perspective. Based on
previous research efforts we identified seven major character-
istics in the IoT [4]: intelligence, architecture, complex system,
size considerations, time considerations, space considerations,
and everything-as-a-service. These characteristics need to be
considered when developing IoT solutions throughout all the
phases from design, development, implement and evaluation.
• Intelligence: This means the application of knowledge.

First the knowledge needs to be generated by collecting
data and reasoning it. Transforming the collected raw data
into knowledge (high-level information) can be done by
collecting, modelling, and reasoning the context. Context can
be used to fuse sensor data together to infer new knowledge.
Once we have knowledge, it can be applied towards more
intelligent interaction and communication.

• Architecture: IoT should be facilitated by a hybrid ar-
chitecture which comprises many different architectures.
Primarily there would be two architectures: event driven [51]
and time driven. Some sensors produce data when an event
occurs (e.g. door sensor); the rest produce data continuously,
based on specified time frames (e.g. temperature sensor).
Mostly, the IoT and SN are event driven [52]. Event-
Condition-Action (ECA) rules are commonly used in such
systems.

• Complex system: The IoT comprises a large number of
objects (sensors and actuators) that interact autonomously.
New objects will start communicating and existing ones will
disappear. Currently, there are millions of sensors deployed
around the world [53]. Interactions may differ significantly
depending on the objects capabilities. Some objects may
have very few capabilities, and as such store very limited
information and do no processing at all. In contrast, some
objects may have larger memory, processing, and reasoning
capabilities, which make them more intelligent.

• Size considerations: It is predicted that there will be 50-100
billion devices connected to the Internet by 2020 [4]. The
IoT needs to facilitate the interaction among these objects.
The numbers will grow continuously and will never decrease.
Similar to the number of objects, number of interactions may
also increase significantly.

• Time considerations: The IoT could handle billions of
parallel and simultaneous events, due to the massive number
of interactions. Real-time data processing is essential.

• Space considerations: The precise geographic location of a
object will be critical [54] as location plays a significant role
in context-aware computing. When the number of objects get
larger, tracking becomes a key requirement. Interactions are
highly dependent on their locations, their surroundings, and
presence of other entities (e.g. objects and people).

• Everything-as-a-service: Due to the popularity of cloud
computing [55], consuming resources as a service [56]
such as Platform-as-a-Service (PaaS), Infrastructure-as-a-
Service (IaaS), Software-as-a-Service (SaaS), has become
main stream. Everything-as-a-service [57] model is highly
efficient, scalable, and easy to use. IoT demands significant
amounts of infrastructure to be put in place in order to make
its vision a reality, where it would follow a community or
crowd based approach. Therefore, sharing would be essential,
where an everything-as-a-service model would suit mostly
sensing-as-a-service [5].

I. Middleware Support for IoT
As we mentioned at the beginning, the IoT needs to be

supported by middleware solutions. “Middleware is a software
layer that stands between the networked operating system and
the application and provides well known reusable solutions
to frequently encountered problems like heterogeneity, inter-
operability, security, dependability [58].” The functionalities
required by IoT middleware solutions are explained in detail in
[4], [19], [20], [21], [29]. In addition, challenges in developing
middleware solutions for the IoT are discussed in [59]. We
present the summary of a survey conducted by Bandyopad-
hyay et al. [14]. They have selected the leading middleware
solutions and analyse them based on their functionalities,
each one offers, device management, interoperation, platform
portability, context-awareness, and security and privacy. Table
I shows the survey results. By the time we were preparing
this survey, some of the middleware solutions listed (i.e. GSN
and ASPIRE) were in the processing of extending towards
next generation solutions (i.e. EU FP7 project OpenIoT (2012-
2014) [60]) by combining each other’s strengths.

J. Research Gaps
According to Table I, it can be seen that the majority of the

IoT middleware solutions do not provide context-awareness
functionality. In contrast, almost all the solutions are highly
focused on device management, which involves connecting
sensors to the IoT middleware. In the early days, context-
awareness was strongly bound to pervasive and ubiquitous
computing. Even though there were some middleware solu-
tions that provided an amount of context-aware functionality,
they did not satisfy the requirements that the IoT demands.
We discuss the issues and drawbacks with existing solutions,
in detail, in Section V. We discuss some of the research
directions in Section VII.

In this section, we introduced the IoT paradigm and high-
lighted the importance of context-awareness for the IoT. We
also learnt that context-awareness has not been addressed in

Major Chracteristics for IoT
•  intelligence

•  fuse sensor data
•  architecture

•  Event-driven, time-driven
•  complex system

•  Sensors, actuators
•  size considerations

•  50-100 billion devices
•  time considerations

•  Real-time data processing
•  space considerations

•  location plays a significant role in context-aware computing
•  everything-as-a-service

•  Sharing would be essential

What is Context ?
•  “Context is any information that can be used to

characterise the situation of an entity. An entity is a
person, place, or object that is considered relevant to the
interaction between a user and an application, including
the user and applications themselves”

•  “

What is Context ?
• Circumstance, situation, phase, position, posture, attitude,

place, point; terms; regime; footing, standing, status,
occasion, surroundings, environment, location,
dependence.”

Raw Data and Context Information
• Raw (sensor) data: Is unprocessed and retrieved directly

from the data source, such as sensors.

• Context information: Is generated by processing raw sen-
sor data. Further, it is checked for consistency and meta
data is added.

Events
• Discrete Events

• Continuous Events

Context-Awareness
•  “A system is context-aware if it uses context to provide
•  relevant information and/or services to the user, where

relevancy depends on the user’s task.

• Context awareness frameworks typically should support
•  acquisition
•  representation
•  delivery
•  reaction

Context Model and Context Attribute
• A context model identifies a concrete subset of the context

that is realistically attainable from sensors, applications
and users and able to be exploited in the execution of the
task. The context model that is employed by a given
context-aware application is usually explicitly specified by
the application developer, but may evolve over time.

• A context attribute is an element of the context model
describing the context. A context attribute has an
identifier, a type and a value, and optionally a collection of
properties describing specific characteristics

Quality of Context
•  context data validity

•  context data precision

•  context data up-to-dateness

Categories of Context
422 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

�
�
�
�
��
�
�

�	

�
��
��

�
�

�
�
��
�
��
�

������ �
���	���

���������	
��
������
������������
���	��������

�
�
��

�
�
��
�
	

�
�
�
�
�
��

�
��

�
�
�
�
�
��

�
�
�
�
�	

�
�
�
��
�
�
�

���������	������������
�
������
�����������	
���	�
������	
�

�������
���������
������
�����
	���������������
�

���
����������
���
�
	�
��������
����
������	
�

�	
��������
�����	�������������
������	�����
����

��
	�����
���
�����������!��
	�
����
���
�����
�	
�

"��	��
���
�����������!��
	����
�!��
�� ��
��
��������� ����
���#���������
#����
�
��
�
���

$
���
�
����
�	������������
���
"��
!��%�������

�	
�����������
�������
�����
��������������
��������������

�	
��������
��!��
	����
$"������

$
�	���
�����������%

&�������
��
��
�����!��
	�
����
��
��
������������

��
	�����
���
�!��
	�����
�
����
���������������	����
�	
�

Fig. 5. Context categorisation in two different perspectives: conceptual and
operational. It shows why both operational and conceptual categorisation
schemes are important in IoT paradigm as the capture different perspectives.

it could be identified as primary context. However, if we
derive the same information from a patient’s health record
by connecting to the hospital database, we call it secondary
context. Therefore, the same information can be acquired
using different techniques. It is important to understand that
the quality, validity, accuracy, cost and effort of acquisition,
etc. may varied significantly based on the techniques used.
This would be more challenging in the IoT paradigm, because
there would be a large amount of data sources that can be used
to retrieve the same data value. To decide which source and
technique to use would be a difficult task. We will revisit this
challenge in Section VI. In addition, a similar type of context
information can be classified as both primary and secondary.
For example, location can be raw GPS data values or the
name of the location (e.g. city, road, restaurant). Therefore,
identifying a location as primary context without examining
how the data has been collected is fairly inaccurate. Figure 5
depicts how the context can be identified using our context
type definitions.

• Primary context: Any information retrieved without using
existing context and without performing any kind of sensor
data fusion operations (e.g. GPS sensor readings as location
information).

• Secondary context: Any information that can be computed
using primary context. The secondary context can be com-
puted by using sensor data fusion operations or data retrieval
operations such as web service calls (e.g. identify the dis-
tance between two sensors by applying sensor data fusion
operations on two raw GPS sensor values). Further, retrieved
context such as phone numbers, addresses, email addresses,
birthdays, list of friends from a contact information provider
based on a personal identity as the primary context can also
be identified as secondary context.
We acknowledge location, identity, time, and activity as

important context information. The IoT paradigm needs to

consider more comprehensive categorisation schemes in a
hierarchical manner, such as major categories, sub categories
and so on. Operational categorisation schemes allow us to
understand the issues and challenges in data acquisition tech-
niques, as well as quality and cost factors related to context.
In contrast, conceptual categorisation allows an understanding
of the conceptual relationships between context. We have to
integrate perspective in order to model context precisely. We
compare different context categorisation schemes in Table IV.
In addition to the two categorisation schemes we discussed
earlier there are several other schemes introduced by different
researchers focusing on different perspectives. Further, we
highlight relationships between different context categories
(also called context types) in different perspectives in Table II
and in Table III. These context categories are not completely
different from each other. Each category shares common
characteristics with the others. The similarities and difference
among categories are clearly presented in Table III. Further,
we have listed and briefly explained three major context cate-
gorisation schemes and their categories proposed by previous
researchers. In Table II, we present each categorisation effort
in chronological order from left to right.
• Schilit et al. [79] (1994): They categorised context into three
categories using a conceptual categorisation based technique
on three common questions that can be used to determine
the context.

1) Where you are: This includes all location related in-
formation such as GPS coordinates, common names
(e.g. coffee shop, university, police), specific names
(e.g. Canberra city police), specific addresses, user
preferences (e.g. user’s favourite coffee shop).

2) Who you are with: The information about the people
present around the user.

3) What resources are nearby: This includes information
about resources available in the area where the user is
located, such as machinery, smart objects, and utilities.

• Henricksen [89] (2003): Categorised context into four cat-
egories based on an operational categorisation technique.

1) Sensed: Sensor data directly sensed from the sensors,
such as temperature measured by a temperature sensor.
Values will be changed over time with a high frequency.

2) Static: Static information which will not change over
time, such as manufacturer of the sensor, capabilities
of the sensor, range of the sensor measurements.

3) Profiled: Information that changes over time with a low
frequency, such as once per month (e.g. location of
sensor, sensor ID).

4) Derived: The information computed using primary con-
text such as distance of two sensors calculated using
two GPS sensors.

• Van Bunningen et al. [95] (2005): Instead of categorising
context, they classified the context categorisation schemes
into two broader categories: operational and conceptual.

1) Operational categorisation: Categorise context based on
how they were acquired, modelled, and treated.

2) Conceptual categorisation: Categorise context based on
the meaning and conceptual relationships between the
context.

A different Approach
• Sensed: Sensor data directly sensed from the sensors,

such as temperature measured by a temperature sensor.
Values will be changed over time with a high frequency.

• Static: Static information which will not change over time,
such as manufacturer of the sensor, capabilities of the
sensor, range of the sensor measurements.

• Profiled: Information that changes overtime with a low
frequency, such as once per month (e.g. location of
sensor, sensor ID).

• Derived: The information computed using primary context
such as distance of two sensors calculated using two
GPS sensors.

Levels of Context Awareness

• Personalisation

• Passive context-awareness

• Active context-awareness

Characteristics of Context-Awareness
•  1) is sensed though sensors or sensor networks
•  2) is sensed by small and constrained devices
•  3) originates from distributed sources
•  4) is continuously changing
•  5) comes from mobile objects
•  6) has a temporal character
•  7) has a spatial character
•  8) is imperfect and uncertain.

Context LifeCycle 426 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

selected ten popular data life cycles to analyse in this survey.
In the following list, 1-5 belong to ELA category and 6-10
belong to CLA category. Three dots (...) denotes reconnecting
to the first phase by completing the cycle. The right arrow
(→) denotes data transfer form one phase to another.

1) Information Lifecycle Management (ILM) [110]: cre-
ation and receipt → distribution → use → maintenance
→ disposition → ...

2) Enterprise Content Management (ECM) [111]: capture
→ manage → store → preserve → deliver → ...

3) Hayden’s Data Lifecycle [112]: collection → relevance
→ classification → handling and storage → transmis-
sion and transportation → manipulate, conversion and
alteration → release → backup → retention destruction
→ ...

4) Intelligence Cycle [113]: collection → processing →
analysis→ publication → feedback → ...

5) Boyd Control Loop (also called OODA loop) [114]:
observe → orient → decide → act → ...

6) Chantzara and Anagnostou Lifecycle [115]: sense (con-
text provider) → process (context broker) → dissemi-
nate (context broker) → use (service provider) → ...

7) Ferscha et al. Lifecycle [116]: sensing → transformation
→ representation → rule base → actuation → ...

8) MOSQUITO [117]: context information discovery →
context information acquisition → context information
reasoning → ...

9) WCXMS Lifecycle [109]: (context sensing → context
transmission → context acquisition → ...) → context
classification → context handling → (context dissemi-
nation → context usage → context deletion → context
request →...) → context maintenance → context dis-
position →...

10) Baldauf et al. [10]: sensors → raw data retrieval →
reprocessing → storage → application.

In addition to the life cycles, Bernardos et al. [107] iden-
tified three phases in a typical context management system:
context acquisition, information processing, and reasoning and
decision. After reviewing the above life cycles, we derived an
appropriate (i.e. minimum number of phases but includes all
essential) context life cycle as depicted in Figure 6.

This context life cycle consists of four phases. First, context
needs to be acquired from various sources. The sources could
be physical sensors or virtual sensors (context acquisition).
Second, the collected data needs to be modelled and represent
according to a meaningful manner (context modelling). Third,
modelled data needs to be processed to derive high-level
context information from low-level raw sensor data (context
reasoning). Finally, both high-level and low-level context
needs to be distributed to the consumers who are interested
in context (context dissemination). The following discussion
is based on these four phases.

A. Context Acquisition
In this section we discuss five factors that need to be consid-

ered when developing context-aware middleware solutions in
the IoT paradigm. The techniques used to acquire context can
be varied based on responsibility, frequency, context source,
sensor type, and acquisition process.

��������

�	
�������

��������

���������

��������
��������

��������

�����������

Fig. 6. This is the simplest form of a context life cycle. These four steps are
essential in context management systems and middleware solutions. All the
other functions that may offer by systems are value added services.

1) Based on Responsibility: Context (e.g. sensor data)
acquisition can be primarily accomplished using two methods
[118]: push and pull. A comparison is presented in Table V.
• Pull: The software component which is responsible for
acquiring sensor data from sensors make a request (e.g.
query) from the sensor hardware periodically (i.e. after
certain intervals) or instantly to acquire data.

• Push: The physical or virtual sensor pushes data to the
software component which is responsible to acquiring sensor
data periodically or instantly. Periodical or instant pushing
can be employed to facilitate a publish and subscribe model.
2) Based on Frequency: Further, in the IoT paradigm,

context can be generated based on two different event types:
instant events and interval events VI.
• Instant (also known as threshold violation): These events oc-
cur instantly. The events do not span across certain amounts
of time. Open a door, switch on a light, or animal enters
experimental crop field are some types of instant events. In
order to detect this type of event, sensor data needs to be
acquired when the event occurs. Both push and pull methods
can be employed.

• Interval (also known as periodically): These events span a
certain period of time. Raining, animal eating a plant, or
winter are some interval events. In order to detect this type
of event, sensor data needs to be acquired periodically (e.g.
sense and send data to the software every 20 seconds). Both
push and pull methods can be employed.
3) Based on Source: In addition, context acquisition meth-

ods can be categorised into three categories [119] based on
where the context came from. A comparison is presented in
Table VII.
• Acquire directly from sensor hardware: In this method, con-
text is directly acquired from the sensor by communicating
with the sensor hardware and related APIs. Software drivers
and libraries need to be installed locally. This method is
typically used to retrieve data from sensors attached locally.
Most devices and sensors today require some amount of
driver support and can be connected via USB, COM, or serial
ports. However, wireless technologies are becoming popular
in the sensor community, which allows data transmission

Context LifeCycle
•  1) Information Lifecycle Management (ILM) [110]: cre- ation and

receipt → distribution → use → maintenance → disposition → ...

•  2) Enterprise Content Management (ECM) [111]: capture → manage
→ store → preserve → deliver → ...

•  3) Hayden’s Data Lifecycle [112]: collection → relevance →
classification → handling and storage → transmis- sion and
transportation → manipulate, conversion and alteration → release →
backup → retention destruction → ...

•  4) Intelligence Cycle [113]: collection → processing → analysis→
publication → feedback → ...

•  5) Boyd Control Loop (also called OODA loop) [114]: observe →
orient → decide → act → ...

Context Lifecycle
•  6) Chantzara and Anagnostou Lifecycle [115]: sense (con- text provider)
→ process (context broker) → disseminate (context broker) → use
(service provider) → ...

•  7) Ferschaetal.Lifecycle[116]:sensing→transformation → representation
→ rule base → actuation → ...

•  8) MOSQUITO [117]: context information discovery → context
information acquisition → context information reasoning → ...

•  9) WCXMS Lifecycle [109]: (context sensing → context transmission →
context acquisition → ...) → context classification → context handling →
(context dissemi- nation → context usage → context deletion → context
request →...) → context maintenance → context dis- position →...

•  10) Baldauf et al. [10]: sensors → raw data retrieval → reprocessing →
storage → application.

Context Acquisition
• Based on Responsibility

•  Pull and Push

• Based on Frequency
•  Instant and Interval Events

• Based on Source
•  Sensor Hardware, Middleware, Context Servers

• Based on Sensor Types
•  Physical, Virtual (calendar, contact number directory, twitter

statuses, email and chat applications) and Logical (weather
information)

• Based on Acquisition Process
•  Sense,Derive,Manually

Context Modelling
• Key-Value Modelling
• Markup Scheme Modelling (Tagged Encoding)

•  XML, JSON, ContextML, …

• Graphical Modelling
•  UML, ORM

• Object Based Modelling
•  Logic Based Modelling
• Ontology Based Modelling

Context Reasoning Decision Models
• Context pre-processing
• Sensor data fusion
• Context inference
•  supervised learning, unsupervised learning, rules, fuzzy

logic, ontological reasoning and probabilistic reasoning. PERERA et al.: CONTEXT AWARE COMPUTING FOR THE INTERNET OF THINGS: A SURVEY 433

���

���

���

���

��

��

�����

������	
����

�����������

�����
����	���	����

����	������	������
��

������������ �!	

����� ������	
�
���

������
�����

�����
�
���	��
�	����

����	��
����	�
�����
��

���������
��� �!	

"

#

$"

$#��	
���
�� ��	
�����������
��

Fig. 7. (a) Counts of model types used in 109 of 114 reviewed context-aware applications. (b) Counts for 50 recognition applications; classifiers are used
most often for applications that do recognition [108].

not specific to context-reasoning but commonly used across
many different fields in computing and engineering.

We present the results of a survey conducted by Lim and
Dey [108] in Figure 7. They have investigated the popularity
of context reasoning decision models. The survey is based
on literature from three major conferences over five years:
Computer-Human Interaction (CHI) 2003-2009, Ubiquitous
Computing (Ubicomp) 2004-2009, and Pervasive 2004-2009.

In the IoT paradigm, there are many sensors that sense
and produce context information. The amount of information
that will be collected by over 50 billion sensors is enormous.
Therefore, using all this context for reasoning in not feasible
for many reasons, such as processing time, power, storage,
etc. Furthermore, Guan et al. [97] has proved that using
more context will not necessarily improve the accuracy of
the inference in a considerable manner. They have used two
reasoning models in their research: back-propagation neural
networks and k-nearest neighbours. According to the results,
93% accuracy has been achieved by using ten raw context.
Adding 30 more raw context to the reasoning model has
increased the accuracy by only 1.63%. Therefore, selecting
the appropriate raw context for reasoning is critical to infer
high-level context with high accuracy.

Context reasoning has been researched over many years.
The most popular context reasoning techniques (also called
decision models) are surveyed in [11], [12], [147]. Our inten-
tion in this paper is not to survey context reasoning techniques
but to briefly introduce them so it will help to understand and
appreciate the role of context reasoning in the IoT paradigm.
We classify context reasoning techniques broadly into six
categories: supervised learning, unsupervised learning, rules,
fuzzy logic, ontological reasoning and probabilistic reasoning.
A comparison of these techniques is presented in Table XI

1) Supervised learning: In this category of techniques, we
first collect training examples. Then we label them according
to the results we expect. Then we derive a function that can
generate the expected results using the training data. This
technique is widely used in mobile phone sensing [150] and
activity recognition [151]. Decision tree is a supervised learn-
ing technique where it builds a tree from a dataset that can be
used to classify data. This technique has been used to develop
a student assessment system in [152]. Bayesian Networks is
a technique based on probabilistic reasoning concepts. It uses
directed acyclic graphs to represent events and relationships

among them. It is a widely used technique in statistical
reasoning. Example applications are presented in [141], [153].
Bayesian networks are commonly used in combining uncertain
information from a large number of sources and deducing
higher-level contexts. Artificial neural networks is a technique
that attempts to mimic the biological neuron system. They are
typically used to model complex relationships between inputs
and outputs or to find patterns in data. Body sensor networks
domain has employed this technique for pervasive healthcare
monitoring in [154]. Support vector machines are widely used
for pattern recognition in context-aware computing. It has
been used to detect activity recognition of patients in the
healthcare domain [155] and to learn situations in a smart
home environment [156].

2) Unsupervised learning: This category of techniques
can find hidden structures in unlabelled data. Due to the
use of no training data, there is no error or reward signal
to evaluate a potential solution. Clustering techniques such
as K-Nearest Neighbour is popularly used in context-aware
reasoning. Specifically, clustering is used in low-level (sensor
hardware level) sensor network operations such as routing
and high level tasks such as indoor and outdoor positioning
and location [157]. Unsupervised neural network techniques
such as Kohonen Self-Organizing Map (KSOM) are used to
classify incoming sensor data in a real-time fashion [158].
Noise detection and outlier detection are other applications
in context-aware computing. Applications of unsupervised
learning techniques in relation to body sensor networks are
surveyed in [154]. The unsupervised clustering method has
been employed to capturing user contexts by dynamic profiling
in [159].

3) Rules: This is the simplest and most straightforward
methods of reasoning out of all of them. Rules are usually
structure in an IF-THEN-ELSE format. This is the most
popular method of reasoning according to Figure 7. It allows
the generation of high level context information using low
level context. Recently, rules have been heavily used when
combined with ontological reasoning [160], [161], [162].
MiRE [163] is a minimal rule engine for context-aware mobile
devices. Most of the user preferences are encoded using rules.
Rules are also used in event detection [164], [165]. Rules are
expected to play a significant role in the IoT, where they are
the easiest and simplest way to model human thinking and
reasoning in machines. PRIAMOS [166] has used semantic

446 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 16, NO. 1, FIRST QUARTER 2014

�����

�����	
�����
��
�����	��

�
�

��

�
�
�

	
�
�
��

��
��

�

�

��

�
��
�

�
�
�
���

�

�
�

��

�
��
�

�

�
�

�

�
�

�

��

�
��
�

��
��
��

�
��
�

���������	
��������
�������
������
���
�!�����	"�#����
��$�
�"�	
���$
��%�&�	���
�����%�
��'���	��
�����'
��%��������
�����%

�����	��	�������	
���������

��(��"�����)�*
�� ��������(
��'�*��"
��*
�� ��������'

���������	
��������
���������	�
�����������
���	������	�
�����������
������	����
�����������������
������������	�
����
�����������	�������������

����	�������	���������
���
�
�#���
��+
�������	������
��,���������#��
���
���
�
�#

��#��
���
�
��"
���
�����������������	�����
���
�
�*
��"����

 ��������	������!���
����*������#�������
����*����������
	���
����
�����
���)���	��
����#
�����	�)�	�
��
����#
�������������

��������	
�����������

� �������
���
� '��!��������	��
� ��
�	"

����	"���������
��-���������-
��������
������

.
���#�

%�"���-�	���
������

#����	������!���
����
����#�������
��/�"
�����
���
�����
�.�����
�����

�
�
�
�
�
�
	

������$�����	
��������
��,������
�����,
��+�����"�
������	������+

%��������	���	
&����������

��0	�����
����#��������
����	"�����
��+��)��#
	��1�
		��
	�

���������	���	����������
������������	��������
���������
��
������

������������
������������	�
����
�� �	�������
��!�
������������	�
��"�
��#�
����	�
��$�
���������	�
��%�

��������	���	
"������

��������������
�������������

����	������	��''���
��+"���	
����������+
����)�*
���������
��
������	
� ���
� ������������
� �����������	�����

(������	��	%������
����)��	��������������
���
���
������

����!��	
%�!'�������

� ������
� ��
�������	"�����
� �����������	"�����
� ��������������	"�����
� �	�����������	"�����
���
�
�)���������
����

����	
�!�	
"���������

������������	�����
���������
��
���
��2��������	���
��.�
	!��
��+
�
��������	�����

����������	
��������
� +��"�
������
� 0��
��
��0����
�
� �����������	�

� ����	��������
� ."����"�#�����*
��
� ."����"�	�������������

����)�����
��2���#
���
���
�"�#
��	
��1���
�����	
�
��������)��#
��������3�
����3�
���������������#���	
�3������
�

����	������	
������!���

� �������
���
� ,�
�����
�����#��
� �
�
�������
�����#��
����##��	
����1�+����	���

������	������!���
������#
�����������
��	�)����
���

���*��!�	%������������
� +������
�	"���	����
� (��������
���
��0�������
������

����)��!���
����
�
���
�)��#
���
�������	�������
��������
������
�
�����	�����
��������#��
���

�������$�����
��2
�����������+0�
����	�#��
���
������������������
��
����
�����

���������������
����##��	
���������	���
��+����
##���	�#�����
���
�
�����	�����
�����������
������
��

��������	
������!���

�	2���������#��
���
��������	������#��
���
������
��3�
��+��	�����
��4��*��!�	�##��	
���

%����!��	
������!���

� �������
���
� +
�
�������##��	
���
� +��)����#
���
	�

� �
�
�)��#
��
� �
#������
���
� (������
� +��)���	��
� �������������

&���	������	��������
���,��������	�����
�����*�������������
�����#
��	�������
���

"��*"���������
��(
�����#���)�	���
�
�
��
		��
��3�����)��
��3
���������������������������	�#�����
��(
����
#���������
�
�
��������������	�)��	�3��	�������
����������
����������	���
��%������������	���
��
�
�#
�	"��

%������	�������
������#
����	�������"
����
���*���#������������	���*��"�
�
�����������	��������

Fig. 8. Taxonomy (functionalities commonly supported in existing research prototypes and systems); Conceptual Framework (value added features that need
to be supported by ideal context-aware IoT middleware solution)

