Non-Regular Languages

Non-regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{vv^R : v \in \{a,b\}^*\}$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ $etc...$

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts $\,L\,$

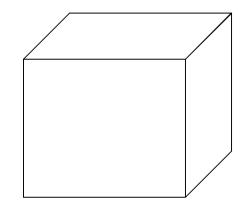
Problem: this is not easy to prove

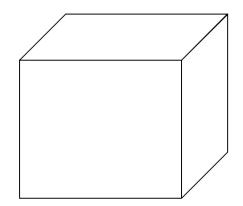
Solution: the Pumping Lemma!!!

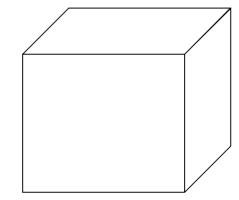
The Pigeonhole Principle

4 pigeons

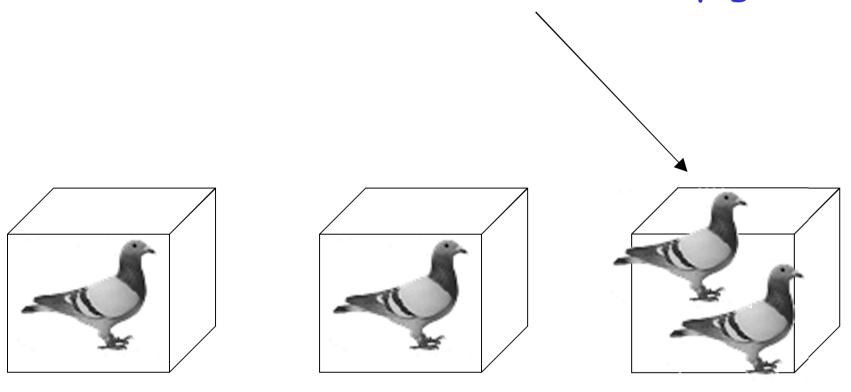
3 pigeonholes



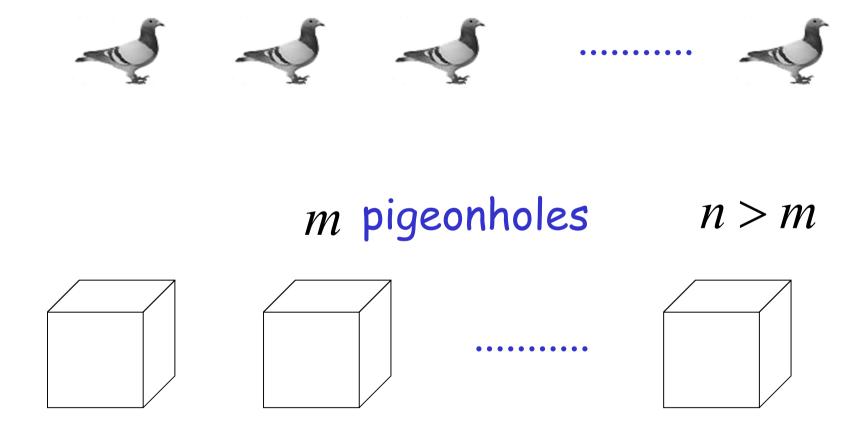




A pigeonhole must contain at least two pigeons



n pigeons



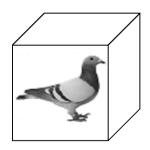
The Pigeonhole Principle

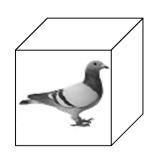
n pigeons

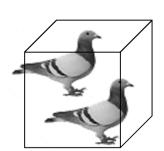
m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons





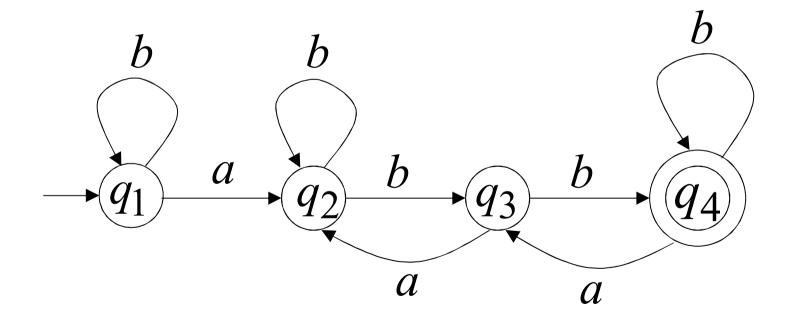


The Pigeonhole Principle

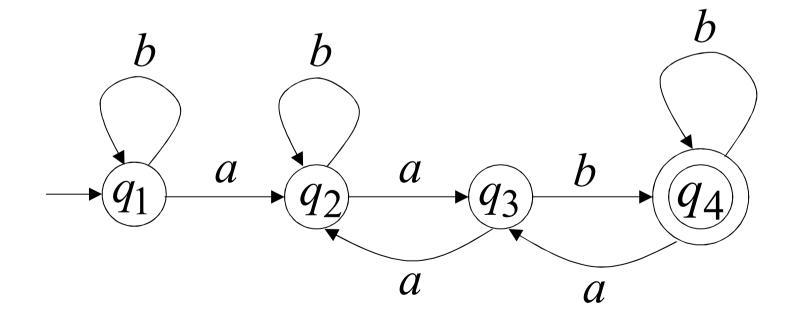
and

DFAs

DFA with 4 states



In walks of strings: a no state is repeated aab



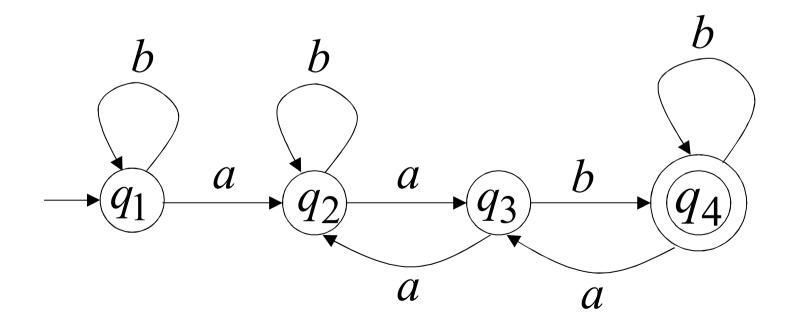
In walks of strings: aabb

bbaa

abbabb

abbabb

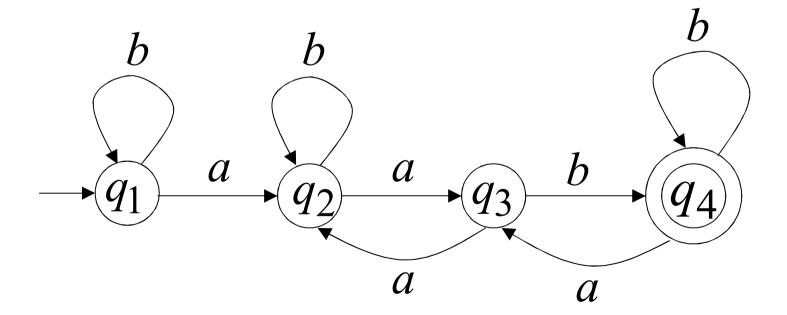
abbabb



If string w has length $|w| \ge 4$:

Then the transitions of string w are more than the states of the DFA

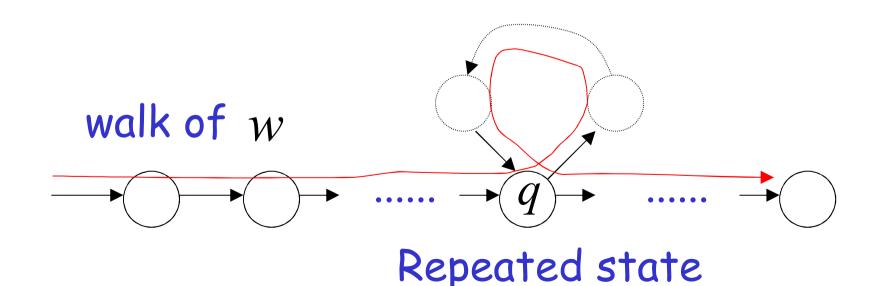
Thus, a state must be repeated



In general, for any DFA:

String w has length \geq number of states

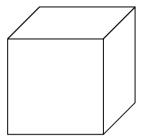
A state q must be repeated in the walk of w

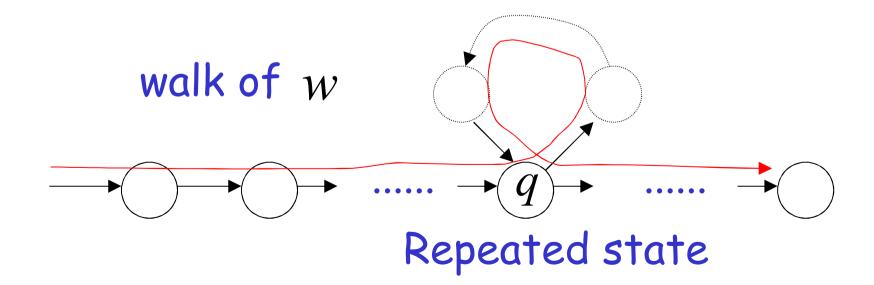


In other words for a string w:

 \xrightarrow{a} transitions are pigeons

(q) states are pigeonholes

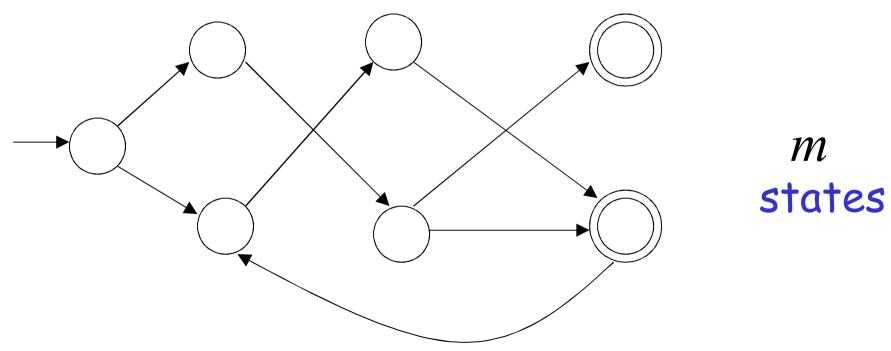




The Pumping Lemma

Take an infinite regular language L

There exists a DFA that accepts $\,L\,$



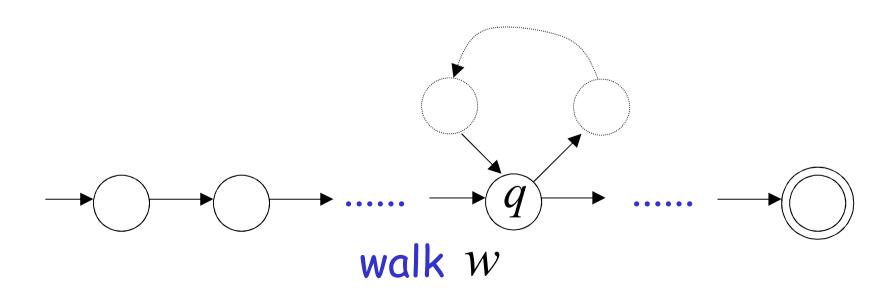
Take string w with $w \in L$

There is a walk with label w:

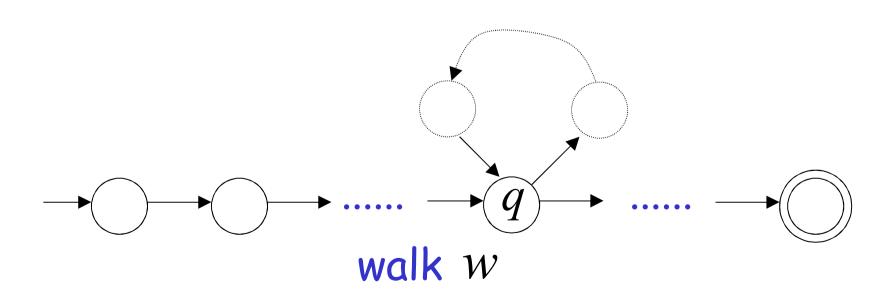
If string
$$w$$
 has length $|w| \ge m$ (number of states of DFA)

then, from the pigeonhole principle:

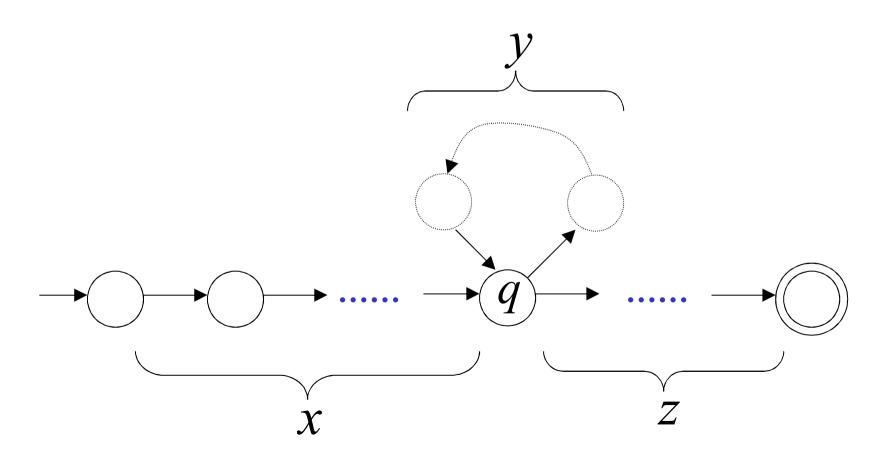
a state is repeated in the walk w



Let q be the first state repeated in the walk of w

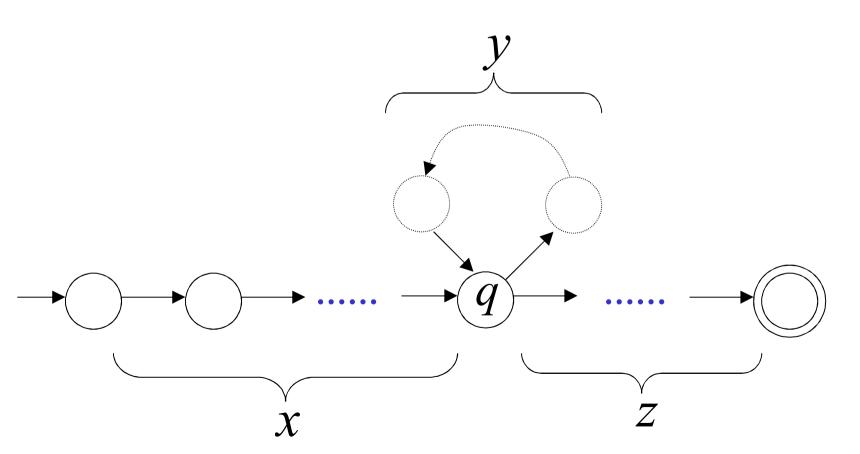


Write w = x y z

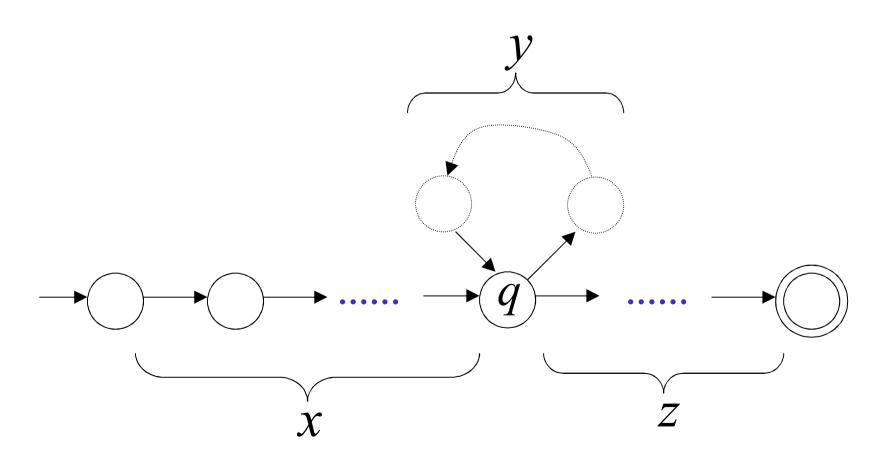


Observations:

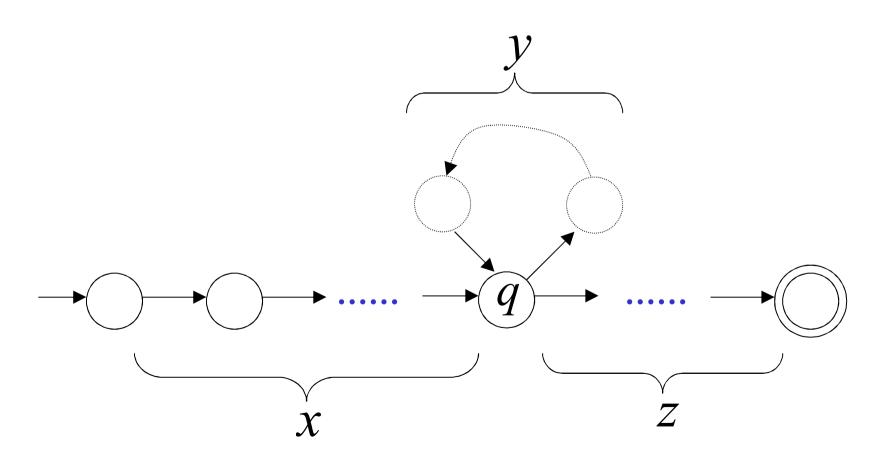
$$| length | x y | \leq m \text{ number}$$
 of states
$$| length | y | \geq 1 \quad \text{of DFA}$$



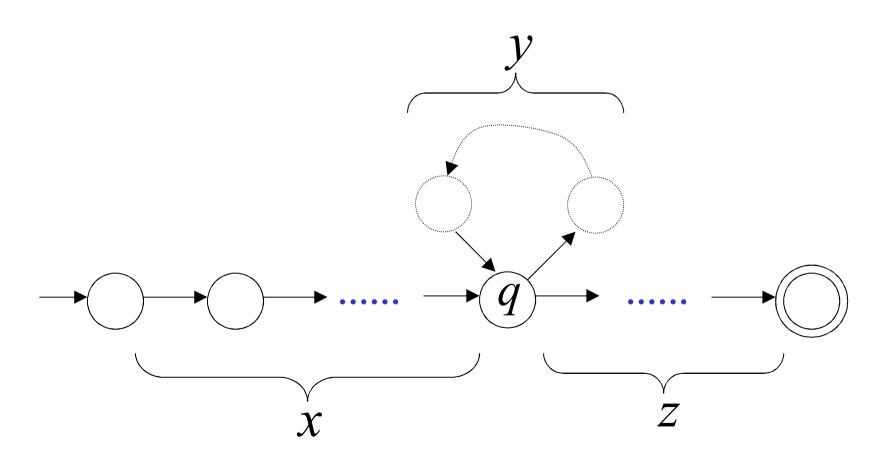
Observation: The string xz is accepted



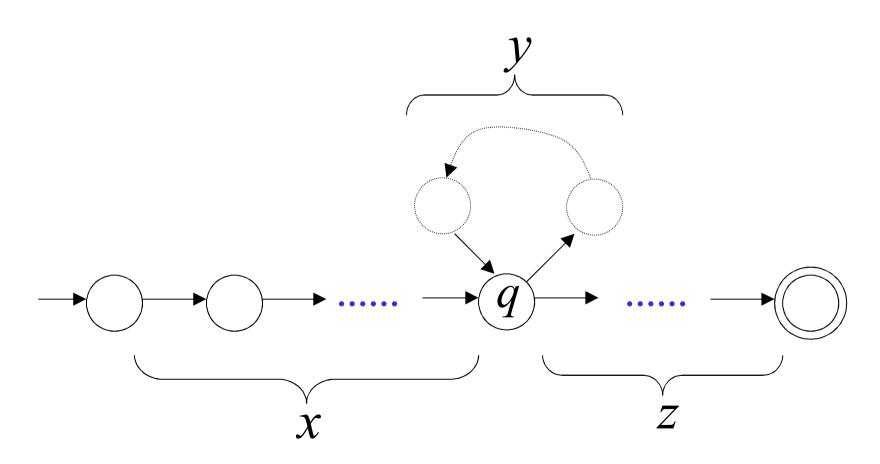
Observation: The string x y y z is accepted



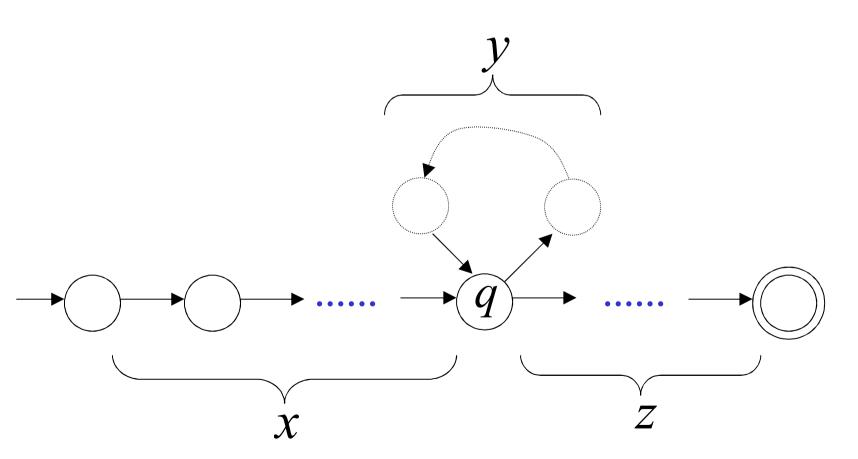
Observation: The string x y y y z is accepted



In General: The string $x y^i z$ is accepted i = 0, 1, 2, ...



In General: $x y^i z \in L$ i = 0, 1, 2, ... Language accepted by the DFA



In other words, we described:

The Pumping Lemma:

- \cdot Given an infinite regular languageL
- there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^i z \in L$ i = 0, 1, 2, ...

Applications

of

the Pumping Lemma

Theorem: The language
$$L = \{a^nb^n : n \ge 0\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length
$$|w| \ge m$$

We pick
$$w = a^m b^m$$

Write: $a^m b^m = x y z$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{m}$$

Thus:
$$y = a^k$$
, $k \ge 1$

$$x y z = a^m b^m$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^i z \in L$

$$i = 0, 1, 2, \dots$$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

Thus:
$$a^{m+k}b^m \in L$$

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Non-regular languages $\{a^nb^n: n \ge 0\}$

