
Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 1

1

GENERAL INFORMATION

BLM 2012 - OBJECT ORIENTED PROGRAMMING

February 2020

Asst. Prof. Dr. Yunus Emre SELÇUK

SUGGESTED BOOKS:

• Java Programming:

• Java How to Program, Harvey M. Deitel & Paul J. Deitel, Prentice-Hall.

• 7th ed. or newer, early objects version

• Core Java 2 Volume I&II, C. S. Horstmann and G. Cornell, Prentice-Hall.

• 7th ed. or newer

• UML:

• UML Distilled, 3rd ed. (2003), Martin Fowler, Addison-Wesley.

SCORING

• 1st midterm: %20

• 2nd midterm: %20

• Midterm makeup

• Final exam: %40

• Lab: %10

• Project: %10

Week 8: March 26th, 2020

Week ?: (TBA)

Week 14: May 7th, 2020

Finals week (TBA)

Begins in week ?: (TBA)

Due date and details (TBA)

2

GENERAL INFORMATION

HIGHLIGHTS

• Labs:

• Lectures may be given by instructors in lab hours by instructors for 2

weeks (not in 2019-2)

• When the lab schedule starts, lab activities and classroom example

activities will alternate

• Check lab assistant’s AVESİS pages for updated information

• (TBA)

• Regulation:

• A student with success note lower than 40 will fail a course with FF,

whether s/he has taken that course before or not.

• Interpretion: 40 cannot correspond to CC

GROUPS

• Gr.1 Doç. Dr. Mehmet S. Aktaş

• Gr.2 Dr. Öğr. Üyesi Yunus Emre Selçuk

• Pay attention to enter lectures and exams in your registered group

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 2

3

GENERAL INFORMATION

COURSE OUTLINE

• General Outline of the Java Programming Language

• Objects and Classes

• UML Class Schemas

• Object State, Behaviour and Methods

• Primitives & wrappers, method parameters’ intricasies (call-by-value-of-

references)

• Object and Class Collaborations and Relations

• UML Interaction (Sequence) Diagrams

• Inheritance and Abstract Classes

• Interfaces and Multiple Inheritance

• Polymorphism, Method Overriding and Overloading

• Enum classes

• Introduction to generic classes using basic data structures (Lists&Maps).

• Exception handling

• Typecasting

• Working with Files and Streams (Serialization).

• Inner classes

• Introduction to Multithreading

4

GENERAL OUTLINE OF THE JAVA PROGRAMMING LANGUAGE

• Standard Edition (JSE):

• Suitable for developing any kind of application except applications for

mobile devices

• Micro Edition (JME):

• Suitable for developing applications for mobile devices, smartphones,

etc.

• Contains a subset of libraries of JSE.

• Enterprise Edition (JEE):

• Contains JSE and an application server software (App. server)

• App. server gives several services to applications coded by JSE.

• More complex applications such as multi-tiered applications, web

services, etc. need these services.

• Transaction support is one of these services.

• The basic App. Server is named "Sun Java System Application Server".

• But there are other compatible services as well:

• IBM Websphere

• BEA WebLogic

• Apache Tomcat

• …

JAVA EXECUTION ENVIRONMENT

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 3

5

GENERAL OUTLINE OF THE JAVA PROGRAMMING LANGUAGE

JAVA EXECUTION ENVIRONMENT

• Java is an interpreted language

.java .class

• Java Virtual Machine (JVM)

• java.exe/javaw.exe: for

command line/GUI apps

• is included in JRE (Java

Runtime Environment)

javac.exe

Source

code

Compiled

code

Executable

code
Execution

Compiler

compilation

Linker

linking

OS

Interpretion

Interpreter

• JDK: Java Development Kit

• Includes javac.exe

• Optionally excludes

IDE

• JDK is for developers and JRE is for end-users

• JDK includes JRE

6

GENERAL OUTLINE OF THE JAVA PROGRAMMING LANGUAGE

JAVA EDITIONS

• The old and the new way of naming Java:

Developer Version (Old way) Product Version (New way)

Java 1.0, 1.1

Java 1.2 Java 2 Platform

Java 1.3 Java 2 SE 3 (J2SE3)

Java 1.4, 1.5 J2SE4, J2SE5

Java 1.6 {Sun} Java Platform Standard Edition, version 6 (Java SE6 / JSE6)

Java 1.7 {Oracle} Java Platform Standard Edition, version 7 (Java SE7 / JSE7)

Java 1.8 Java Platform Standard Edition, version 8 (Java SE8 / JSE8)

Has LTS (Long Term Support) for legacy systems and brings

new language features not covered in this lecture

Java 1.9, 1.10, 1.12 Short-term releases (~6 months each) (support has ended)

Java 1.11 Java SE11. Has LTS, language features and tools not covered in

this lecture

Java 1.13 Java SE13. Current version.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 4

7

• Versioning details:

• JDK 1.8.0_241:

• Java Version 8.0, update 241.

• JDK 1.13.0.2

• Update:

• Small bug fixes and security improvements.

• Updated multiple times a year.

• Lecture notes are prepared according to JDK1.5

• Where to obtain:

• oracle.com/java (web site changes frequently!)

• http://www.oracle.com/technetwork/java/javase/downloads/index.html

• Select the correct version: x86(i586) vs. x64

• Download and unzip the documentation as well.

GENERAL OUTLINE OF THE JAVA PROGRAMMING LANGUAGE

JAVA EDITIONS

8

FREE JAVA DEVELOPMENT TOOLS

• IDE: Integrated Development Environment

• Eclipse: http://www.eclipse.org

• Downloaded separately

• You need to install a plug-in (such as eUML2) for drawing UML schemas.

• You need to install a plug-in for writing GUI applications.

• No need to have administrator rights on the computer, just unzip it.

• NetBeans:

• Download separately or optionally with JSE.

• You need to install a plug-in (suggestions?) for drawing UML schemas.

• Has built-in GUI editor.

• Needs administrator rights for installation.

FREE UML MODELING TOOLS

• Violet UML: Lightweight, enough for this course.

• Argo UML

GENERAL OUTLINE OF THE JAVA PROGRAMMING LANGUAGE

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 5

9

BLM 2012 OBJECT ORIENTED PROGRAMMING LECTURE NOTES

Assist. Prof. Dr. Yunus Emre SELÇUK

FUNDAMENTALS OF OBJECT ORIENTATION

10

CLASSES, OBJECTS AND MEMBERS

OBJECT

• Object: The main programming element.

• Contains attributes and tasks.

• Object ≈ a real-world entity.

• Similar to variables but Superman is

similar to mere mortals, too!

• Attributes of an object ≈ Data about this

entity.

• Tasks ≈ actions ≈ methods

• Similar to functions but …

• Each function can access:

• Any attribute of an object and,

• Any given parameter but …

• … there are many rules!

• Our purpose is to master these

rules.

Data

• Encapsulation: The

data and the methods

of an object cannot be

separated.

• Data is accessed

through methods.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 6

11

CLASSES, OBJECTS AND MEMBERS

CLASS

class myClass {

//program code

}

• A class is just a template which defines objects.

• The program is coded as classes, but the real work is done by the

objects.

• You may think a class as a cookie cutter and think objects as cookies!

OBJECTS AND CLASSES

• An example object: A particular car.

• Attributes: Model, license plate number, color, etc.

• Usually, one of the attributes of an object is determined as its

logical unique identifier (UID).

• Such as the plate number of a car.

• Actions: Query a car about its license plate number, to sell this car, etc.

• An example class: Automobile.

• A program code which defines the attributes and methods of cars.

• You can create any number of classes from any different classes within an

object oriented program.

12

CLASSES, OBJECTS AND MEMBERS

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 7

13

CLASSES, OBJECTS AND MEMBERS

OBJECTS AND CLASSES

• The attributes of an object can be conceptually divided into two groups:

• Primitives: One unit of information such as integer numbers, real

numbers and boolean values.

• Non-primitives: Any number of objects from any number of classes.

14

CLASSES, OBJECTS AND MEMBERS

TERMINOLOGY AND REPRESENTATION

• NYP Terminology:

• Data = Member field = field = attribute

• State: Set of values of all attributes of an object

• Task = Action = function = Method = Member method

• Members of a class/object = Methods + fields

• Class = type.

• If o is an object of class C, we can also say that o is an instance of C.

• UML Representation:

A class shown in a

class diagram
An object shown in a

sequence diagram

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 8

15

CLASSES, OBJECTS AND MEMBERS

TERMINOLOGY AND REPRESENTATION

• There are two kinds of UML interaction diagrams:

1. Sequence diagrams

2. Collaboration diagrams

• We will draw sequence diagrams in this course,

• The name "interaction" reflects the nature of these diagrams so well

that I may use "interaction" and "sequence" interchangebly.

16

CLASSES, OBJECTS AND MEMBERS

EACH OBJECT IS A DIFFERENT INDIVIDUAL!

• Consider two objects of the same type:

• Although both have the same type of attributes, the values of these

attributes will be different = The states of these objects will be different.

• Even if you create two objects having the same state, these two objects

will be represented in different areas of the memory.

• In Java, the JVM creates a unique identifer for this purpose. This

process, as well as the other memory management processes, are

transparent to the programmer.

• so transparent that you cannot interfere with

• Example: Any two cars cruising in the street.

• Some attributes: Model, color, license plate.

• The models and the colors of these cars will be different.

• Even if you see the same yellow Anadol STC's, their license plates will be

different.

• Even if there is a conteirfeiting in effect so that their license plates are

the same, their drivers will be different!

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 9

17

CLASSES, OBJECTS AND MEMBERS

EACH OBJECT IS A DIFFERENT INDIVIDUAL!

• Two different objects will give different answers to the same message, even if

they are of the same type.

• Why? Because their states will be different.

• Moreover, you can give different parameters to the same method.

18

CLASSES, OBJECTS AND MEMBERS

MEMBER ACCESS

• We access a member field of an object in order to:

• Change its value (setting)

• Read its value (getting)

• We access a member method of an object in order to :

• Run a method, optionally with some parameters

• Calling a method is similar to calling a function in C.

• But remember: Unless otherwise, a method of an object works with

the members of this object.

• How come otherwise?

• Wait until you learn the different kinds of relationships

between objects.

SENDING MESSAGES TO OBJECTS

• Why do we send a message to an object?

• In order to have this object to do something

• To access a member of this object

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 10

19

CLASSES, OBJECTS AND MEMBERS

TERMINOLOGY AND REPRESENTATION

• OOP Terminology:

• An object accesses a member of another object by sending a message

to that other object

• An object oriented program executes as passed messages between

objects.

kitt.getPlate();

• Code representation:

• UML Representation: • Meaning of this figure:

• There is an object named client

• The class of the client is

irrevelant

• There is an object named kitt

• Car is the class of the object kitt

• The class Car has a method

named getPlate

• The client sends the message

getPlate to the object kitt

• the object kitt returns its license

plate as the answer to the

message

20

CLASSES, OBJECTS AND MEMBERS

PACKAGES

• Classes can be grouped together in abstract containers named packages

• The aim is to group such classes that can be used for a particular common

purpose.

import package1.ClassA;

import package1.*;

import package1.package2.*;

• Different classes in different packages may

have the same name,

• yet no conflicts arise.

java.io.File

com.fileWizard.File

• Adding classes in a package to our code:

• File path hierarchy must reflect the package hierarchy:

com.fileWizard.File -> com\fileWizard\File.java

• Classes of package2 are not included

when package1 is imported.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 11

21

CLASSES, OBJECTS AND MEMBERS

VISIBILITY RULES AND INFORMATION HIDING

• An object can access all of its members and all members of other objects

belonging to the same class (type).

• However, we can hide some members of an object so that they cannot be

accessed from objects of different types.

• The information hiding principle:

• We hide the members that are related with the inner workings of an object

from objects of different types.

• So that an object does not need to know the internal details of another

object in order to use that other object.

• Example: It is sufficient to know the universal signs of power, volume and

channel switching keys on a remote in order to watch TV.

• You don't need to know that this TV has a device named cathod tube in it.

• Moreover, the users need not to be re-educated for using TVs built with

new technologies such as LCD, plasma, etc.

• Example: Your friend wants to lend some money from you.

• You either open your purse and give him/her that money or not.

• You don't have to tell anything about your salary or your PIN number to

your friend!

22

CLASSES, OBJECTS AND MEMBERS

VISIBILITY RULES AND INFORMATION HIDING

• Access modifiers (Visibility rules):

• public: There are no access restrictions to public members

• private: Objects of different types cannot access each other's private

members

• UML representation:

• Moreover (you are not responsible from those in this class):

• protected: #

• Related with inheritance (visible to package and subclasses)

• package: ~

• visible to package

• Default rule in Java

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 12

23

CLASSES, OBJECTS AND MEMBERS

VISIBILITY RULES AND INFORMATION HIDING

• In practice, the information hiding principle cannot be applied in a perfect way.

• A change in code of a class not only affects that class but other classes

that are related with that class as well.

• The further you comply with this principle, the easier your coding overhead

becomes for completing this change as the number of the affected classes

will reduce.

• In order to comply with the information hiding principle:

• Member fields are defined as private, and…

• …the necessary access methods are defined as public.

• At least 5 points for each question will be deduced if you don't comply!

• Access methods (accessors):

• Setter method: Used for changing the value of a member field of an

object.

• Getter method: Used for reading the value of a member field of an object.

• Naming convention: getMember, setMember

24

CLASSES, OBJECTS AND MEMBERS

VISIBILITY RULES AND INFORMATION HIDING

• Example:

• You can easily change the permissions to member fields. For example:

• If you need to restrict the modification of the license plate, remove the

setPlate method from code.

• If you need to permit only the classes in the same package to make this

modification, change the visibility of setPlate to package.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 13

25

CLASSES, OBJECTS AND MEMBERS

SPECIAL CASES OF MEMBERS

• Static member fields:

• The state of each object, even though they are of the same class, is

different.

• However, in some cases, you may need to have all objects of a particular

type to share a common member field.

• In this case, you define this member field with the static keyword.

• Static members are accessed via the class name such as

ClassName.memberName, not via the objects.

• Example: Each automobile has 4 tires.

• Static member methods:

• Two different objects of the same type answer the same message

differently.

• However, in some cases, you may need to have all objects of a particular

type to share a common behavior.

• In this case, you define this member method with the static keyword.

• You may only use static members of an object within a static method of this

object.

• They are accessed via the class name, i.e. ClassName.aMethod()

26

CLASSES, OBJECTS AND MEMBERS

SPECIAL CASES OF MEMBERS

• Final member fields:

• You may need the value of a member field to stay constant.

• In this case, you define this member field with the final keyword

• You may assign a value to a final member of an object only once

• This assignment is usually done when that object is created.

• For example, the chassis number of a car is etched onto it when it is

produced in the factory and it cannot be changed afterwards.

• Final member methods:

• These cannot be overridden (inheritance will be taught later).

• A member can be both final and static at the same time.

• Do not confuse final and static with each other:

• Final: Only once

• Static: Shared usage

• Shown in UML class schemas as: aMember : Type {final,static}

POINTS TO CONSIDER

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 14

27

CLASSES, OBJECTS AND MEMBERS

CONSTRUCTORS AND FINALIZERS

• Constructor Method:

• This method is executed explicitly by the programmer when an object is to

be created.

• Constructors are used for assigning the initial values of the member fields

of an object.

• We will pay a significant attention to constructors in this class.

• Finalizing method:

• This method is executed implicitly by JVM when an object is to be

destroyed.

• The method name is finalize

• It takes no parameters and it does not return anything.

• Unlike C/C++, Java programmers mostly need not to handle memory

management.

• As a result, we will not study finalizer methods any more in this class.

28

CLASSES, OBJECTS AND MEMBERS

CONSTRUCTOR METHODS

• Rules for constructors:

• They are public.

• Their name is the same with the class

• Although they are used to create an object,

• You do not issue a return command within constructor body and

• you do not give a return type to the constructor method.

• It's the best place to assign values to final member fields.

• They are used with the new keyword.

kitt = new Car();

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 15

29

CLASSES, OBJECTS AND MEMBERS

CONSTRUCTOR METHODS

• Defining an object is not enough to use it, you need to instantiate it by

executing its constructor.

public class AClass {

private Car kitt;

someMethod() {

kitt = new Car();

}

}

• UML Representation:

kitt:Car

new

• Code representation1: As a member field

public class AnotherClass {

someMethod() {

Car kitt = new Car();

}

}

• Code representation2: As a temporary

object/variable

30

CLASSES, OBJECTS AND MEMBERS

CONSTRUCTOR METHODS

• Default constructor:

• The constructor without parameters.

• JVM implicitly and automatically defines a default constructor if the

programmer does not code any constructor.

• Constructors with parameters:

• The parameters are used for assigning initial values.

• If the programmer explicitly code a constructor with parameters, the

default constructor is not automatically created by JVM.

• In this case, it's up to the programmer to code a default constructor, if

one required.

• However, business logic often requires constructors with parameter(s)

and forbids default constructors.

• A class can have more than one constructors having different types and

numbers of parameters.

• This is called constructor overloading.

• Regular methods also can be overloaded.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 16

31

CODING AN OBJECT ORIENTED PROGRAM

CONTROL FLOW

• Control flow is the order of execution of program codes.

• In the lowest level, a computer program consists of various commands

that are executed in a particular order.

• The order that these commands are written and the order that they are

executed are not necessarily the same.

• In fact, especially in OOP, these two orderings are almost always

quite different than each other.

• Luckily, the starting point of this control flow is easier to determine.

32

CODING AN OBJECT ORIENTED PROGRAM

BEGINNING OF THE CONTROL FLOW

• The control flow of a program should have a starting point.

• This point is a static method, named main, within a particular class that

is determined by the programmer.

• public static void main(String[] args)

• The array args is used for passing initial parameters to the

program from the command line.

• static: It cannot be otherwise, because:

• No object is created at the beginning of the control flow.

• The task of the main method is to create the initial object(s) and to

begin the execution of the program.

• Remember, an OO program consists of messages sent between

objects.

• The existence of a main method in a class does not imply that this

method will always be used.

• Terminology: Block/body: A piece of code having multiple instructions.

• Shown between curly braces: { }

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 17

33

CREATING YOUR OWN CLASS AND OBJECTS

package nyp01a;

public class Car {

private String plate;

public Car(String plateNr) {

plate = plateNr;

}

public String getPlate() {

return plate;

}

public void setPlate(String plate) {

this.plate = plate;

}

public void introduceSelf() {

System.out.println("My plate: " + getPlate());

}

public static void main(String[] args) {

Car aCar;

aCar = new Car("34 RA 440");

aCar.introduceSelf();

}

}

CODING AN OBJECT ORIENTED PROGRAM

• Draw the class

schema first.

• Then map the

schema and the code

• Pretty printing, camel

casing …

• Source code (implementation)• UML representation

(class diagram)

34

UML REPRESENTATION

• Representation of the main method in the sample code by a sequence

diagram, which is a kind of interaction diagram.

• Pay utmost attention to the ordering and alignment of the arrows!

CODING AN OBJECT ORIENTED PROGRAM

main

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 18

35

CREATING YOUR OWN CLASS AND OBJECTS

CODING AN OBJECT ORIENTED PROGRAM

• Another version of the class Car :
package nyp01b;

public class Car {

private String plate;

private String chassisNR;

public Car(String plateNr, String chassisNR) {

plate = plateNr;

this.chassisNR = chassisNR;

}

public String getPlate() {

return plate;

}

public void setPlate(String plate) {

this.plate = plate;

}

public String getChassisNR() {

return chassisNR;

}

}

• This second version of the class Car does not have a main method.

• Therefore, it cannot be run and tested alone.

• We need to code another class with a main method with these purposes

(will be shown later).

36

CREATING YOUR OWN CLASS AND OBJECTS

CODING AN OBJECT ORIENTED PROGRAM

• Pay attention to the constructor:

• In real world, every car must have a license plate AND a chassis number.

• Therefore, both fields must be initialized in the same constructor having

two parameters.

• The code at the left is right, the code at the right is wrong.

public class Car {

private String plate;

private String chassisNR;

public Car(String plateNr,

String chassisNR) {

plate = plateNr;

this.chassisNR = chassisNR;

}

/* Rest of the code */

}

public class Car {

private String plate;

private String chassisNR;

public Car(String plateNr) {

plate = plateNr;

}

public Car(String chassisNR) {

this.chassisNR = chassisNR;

}

/* Rest of the code */

}• Compile error vs. bug:

• The code at the right does not compile. If it had, it's logic would be wrong

(buggy).

• In real world, the chassis number of a car never changes. Therefore, we didn't

code the getter method of that field. If we had, we would introduce another

bug! (final fields can be mentioned shortly)

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 19

37

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

• Primitive type: One unit of information (non-class).

• Wrapper: A class having one primitive member field and some useful

methods related with that member.

• Natural numbers in Java (Numbers without fractional parts):

Primitive Meaning Range Wrapper

int Integer (4 bytes) Lower: – 2.147.483.648

Higher: + 2.147.483.647

Integer

long Big integer

(8 bytes)

(9,22 x 1018)
long natID = 12345678900L;

Long

short Small integer

(2 bytes)

Lower: –32.768

Higher: +32.767

Short

byte One byte Lower: –128

Higher: +127

Byte

PRIMITIVES AND WRAPPERS

38

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

• Real numbers in Java (Numbers with fractional parts):

Primitive Meaning Range Wrapper

double Large real number (1,79 10308) Double

float Small real number (3,4 1038) Float

• Other primitives:

Primitive Meaning Range Wrapper

char Karakter 'A'-'Z', 'a'-'z', etc.

(UTF-16 encoding)

Character

boolean Mantıksal false – true Boolean

• We will also give more details on the non-primitive type String soon.

PRIMITIVES AND WRAPPERS

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 20

39

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

• Operations with primitives:

• Arithmetic: + - * / %.

• Remember operator predecence

• ++, --,

• ++i and i++ differs: y * ++z, y * z++

• Shorthands: += –= *= /= %=

• Check the static methods of java.lang.Math: pow, abs, round, …

• Binary:

• Boolean algebra: & | ~ ^ (and or not xor)

• Shifting: << >>

• Ex: The rightmost 4th bit of n: (n&8)/8 or (n&(1<<3))>>3

PRIMITIVES AND WRAPPERS

40

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

• You can think of a wrapper as a class with only one member field of a

primitive type that it wraps/boxes.

• We use wrappers for their useful methods and in cases where primitives

cannot be used.

• Serialization and map indexes are examples of such cases that we will

cover in the later weeks.

• The wrappers reside in the java.lang package

• Some useful methods of class Integer (refer to Java API for further methods

and more details)

• int compareTo(Integer anotherInteger)

• int intValue()

• static int parseInt(String s)

• String toString()

• static String toString(int i)

• static Integer valueOf(String s)

Integer sarma1 = 1, sarma2 = 7;

//could use sarma1 = new Integer(1); but that constructor is deprecated,

//i.e it will be removed from the language in a future version

System.out.println("Sonuç1:"+sarma1.compareTo(sarma2)); //-1

PRIMITIVES AND WRAPPERS

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 21

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

STRING CLASS

• Some methods of the class String

• int length()

• int compareTo(String anotherString)

• int compareToIgnoreCase(String str)

• System.out.println(String)

• print / println

• Example:

package nyp01c;

public class StringOps01 {

public static void main(String args[]) {

String strA, strB;

strA = "A string!";

strB = "This is another one.";

System.out.println(strA.compareTo(strB));

}

}

• Output of the example: −19
41

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

STRING CLASS (Continued)

• Some methods of the class String (continued):

• boolean contains(String anotherString)

• String toUpperCase()

• String toLowerCase()

• Note: toUpper/LowerCase methods do not change the state of the

object.

• Considering that note, what will the output of the code given in the next

slide will be?

42

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 22

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

STRING CLASS (Continued)

43

package nyp01c;

public class StringOps02 {

public static void main(String args[]) {

String strA = "İstanbul", strB = "Yıldız";

System.out.println(strA.contains(strB));

strB = "tan";

System.out.println(strA.contains(strB));

strB.toUpperCase();

System.out.println(strB);

System.out.println(strA.contains(strB));

strB = strB.toUpperCase();

System.out.println(strB);

System.out.println(strA.contains(strB));

}

}

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

MATH CLASS

• This class has static methods for common mathematical functions.

• public static double Math.random()

• Returns a double value with a positive sign, greater than or equal to

0.0 and less than 1.0

• Example code:

package nyp01c;
public class MathOps01 {

public static void main(String[] args) {
double value = Math.random();
System.out.println("The generated random value is: " + value);

}
}

44

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 23

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

MATH CLASS (Continued)

• This class has static methods for common mathematical functions (cont’d:)

• variations of public static <primitive> Math.abs(<primitive> a)

• returns the absolute value of parameter a where <primitive> is any

primitive type, i.e.

• public static double Math.abs(double a)

• variations of public static <primitive> Math.max(<primitive> a, b)

• returns the value of the greater of the two parameters where

<primitive> is any primitive type, i.e.

• public static double Math.max(double a, double b)

• variations of public static <primitive> Math.min(<primitive> a, b)

• returns the value of the smaller of the two parameters where

<primitive> is any primitive type, i.e.

• public static double Math.min(double a, double b)

45

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

MATH CLASS (Continued)

• This class has static methods for common mathematical functions (cont’d:)

• public static double Math.ceil(double a)

• returns the upwards-rounded value of a (i.e. 3.1 → 4.0)

• public static double Math.floor(double a)

• returns the downwards-rounded value of a (i.e. 3.9 → 3.0)

• public static double Math.round(double a)

• returns the correctly-rounded value of a (i.e. 3.5 → 4.0, 3.1 → 3.0)

• public static double Math.sqrt(double a)

• returns the correctly rounded positive square root of a

46

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 24

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

MORE ON RANDOM VALUES

• All computer systems rely on pseudo-random number generators.

• It is modeled by java.util.Random class

• If Math.random() is used directly, JRE automatically generates a

Random object and uses it in the entire lifetime of the JVM

• Random class has some useful non-static methods to obtain random

values of desired primitives:

• public boolean nextBoolean() returns [false, true]

• public double nextDouble() returns [0.0, 1.0)

• public float nextFloat () returns [0.0, 1.0)

• public int nextInt() returns (-232, 232)

• public int nextInt(int bound) returns [0, bound)

• public long nextLong() returns [0, 248)

47

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

MORE ON RANDOM VALUES

• Example code:

48

package nyp01c;
import java.util.*;
public class RandomOps {

public static void main(String[] args) {
Random generator = new Random();
int intVal = generator.nextInt();
System.out.println("I have got " + Math.abs(intVal) + " pebbles.");
int bounded = generator.nextInt(11);
System.out.println("I have painted my " + bounded + " fingers.");

}
}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 25

49

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

COMMAND LINE I/O

• Output with System.out object:

• The out member of System is a public and static member

• The object out can therefore be used directly.

• Methods for command line output:

• printLn, print: We have learned those

• printf: Used just as the C programmers know

50

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

COMMAND LINE I/O

• Input operations with the java.util.Scanner class: with JDK 5.0 and later!

• Initialization: Scanner in = new Scanner(System.in);

• System.in : A public static member of type java.io.InputStream.

• Methods for obtaining input (one element at a time):

• String nextLine()

• int nextInt()

• float nextFloat()

• …

package nyp01c;

import java.util.Scanner;

public class ConsoleIOv1 {

public static void main(String[] args) {

Scanner in = new Scanner(System.in);

System.out.print("What is your name? ");

String name = in.nextLine();

System.out.print("How old are you? ");

int age = in.nextInt();

System.out.println("Hello, " + name +

". Next year, you'll be " + (age + 1) + ".");

in.close();

}

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 26

51

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

COMMAND LINE I/O

• A bug in the Scanner class:

• If you get input for a string after getting input for a primitive by using

nextInt, nextFloat, etc., that string goes to void!

• As a workaround, issue an empty nextLine command in such cases.

package nyp01c;

import java.util.Scanner;

public class ConsoleIOv2 {

public static void main(String[] args) {

Scanner in = new Scanner(System.in);

System.out.print("How old are you? ");

int age = in.nextInt();

in.nextLine(); //workaround for the bug

System.out.print("What is your name? ");

String name = in.nextLine();

System.out.println("Hello, " + name +

". Next year, you'll be " + (age + 1) + ".");

in.close();

}

}

52

FUNDAMENTAL DATA REPRESENTATION AND OPERATIONS

COMMAND LINE I/O

• Let's change the main

method so that the

license plate of the

car is obtained from

the user:

package nyp01d;

import java.util.*;

public class Car {

private String plate;

public String getPlate() {

return plate;

}

public void setPlate(String plate) {

this.plate = plate;

}

public Car(String plateNr) {

plate = plateNr;

}

public void introduceSelf() {

System.out.println("My plate: " + getPlate());

}

public static void main(String[] args) {

Car aCar;

Scanner input = new Scanner(System.in);

System.out.print("Enter a license plate: ");

aCar = new Car(input.nextLine());

aCar.introduceSelf();

input.close();

}

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 27

53

BLM 2012 OBJECT ORIENTED PROGRAMMING LECTURE NOTES

Assist. Prof. Dr. Yunus Emre SELÇUK

METHOD PARAMETERS AND CONTROL FLOW

54

PRIMITIVES AND METHOD PARAMETERS

• Java uses "call-by-value" calling style when passing primitive parameters to

methods.

• This calling style works in the same way when you pass parameters

without pointers in the C/C++ language.

• Java uses "call-by-value-of-references" when passing non-primitive

parameters to methods.

• This calling style is different than the style "call-by-references", i.e.

when you pass parameters as pointers in the C/C++ language.

• Well, this style is very similar to the pointer style, except you cannot

change the memory address of object parameters

• This means that changes to object parameters are permanent,

except re-initializing and swapping objects.

• Examine the following code and its output:

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 28

55

PRIMITIVES AND METHOD PARAMETERS

package nyp01e;

public class MethodParametersTest1 {

private Integer wrapI, wrapJ;

public void ilkelDuzenle(int x) { x++; }

public void sarmalayiciDuzenle(Integer x) { x++; }

public void ilkelDegistir(int x, int y) {

int temp; temp = x; x = y; y = temp;

}

public void sarmalayiciDegistir(Integer x, Integer y) {

Integer temp; temp = x; x = y; y = temp;

}

public void sarmalayiciDegistirAlt(Integer x, Integer y) {

Integer temp;

temp = new Integer(x);

x = new Integer(y);

y = new Integer(temp);

}

public void swapForReal() {

Integer temp = wrapI; wrapI = wrapJ; wrapJ = temp;

}

public static void main(String[] args) {

MethodParameters test = new MethodParameters();

test.tryMe();

}

56

PRIMITIVES AND METHOD PARAMETERS
public void tryMe() {

int count = 3;

System.out.println("Before : " + count);

this.ilkelDuzenle(count);

System.out.println("After: " + count);

Integer wrap = 5;

System.out.println("Before : " + wrap);

this.sarmalayiciDuzenle(wrap);

System.out.println("After: " + wrap);

int count1 = 1, count2 = 2;

System.out.println("Before : " + count1 + ", " + count2);

this.ilkelDegistir(count1, count2);

System.out.println("After: " + count1 + ", " + count2);

Integer wrap1 = 1;

Integer wrap2 = 2;

System.out.println("Before : " + wrap1 + ", " + wrap2);

this.sarmalayiciDegistir(wrap1, wrap2);

System.out.println("After: " + wrap1 + ", " + wrap2);

System.out.println("Before : " + wrap1 + ", " + wrap2);

this.sarmalayiciDegistirAlt(wrap1, wrap2);

System.out.println("After: " + wrap1 + ", " + wrap2);

wrapI = 3; wrapJ = 5;

System.out.println("Before : " + wrapI + ", " + wrapJ);

this.swapForReal();

System.out.println("After: " + wrapI + ", " + wrapJ);

}

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 29

57

PRIMITIVES AND METHOD PARAMETERS

• The output:

Before : 3

After: 3

Before : 5

After: 5

Before : 1, 2

After: 1, 2

Before : 1, 2

After: 1, 2

Before : 1, 2

After: 1, 2

Before : 3, 5

After: 5, 3

58

PRIMITIVES AND METHOD PARAMETERS

• Examine the following code and its output:

package nyp01e;

public class MethodParametersTest2 {

public void tryMe() {

int x = 1, y = 2;

System.out.println("Before : " + x + ", " + y);

int temp;

temp = x;

x = y;

y = temp;

System.out.println("After: " + x + ", " + y);

Integer sarma1 = 3;

Integer sarma2 = 5;

System.out.println("Before : " + sarma1 + ", " + sarma2);

Integer gecici = sarma1;

sarma1 = sarma2;

sarma2 = gecici;

System.out.println("After: " + sarma1 + ", " + sarma2);

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 30

59

PRIMITIVES AND METHOD PARAMETERS

public static void main(String[] args) {

MethodParametersTest2 test = new MethodParametersTest2();

test.tryMe();

}

}

• The output:

Before : 1, 2

After: 2, 1

Before : 3, 5

After: 5, 3

60

PRIMITIVES AND METHOD PARAMETERS

• Examine the following code and its output:

package nyp01e;

public class MethodParametersTest3 {

public static void main(String[] args) {

int[] dizi = { 1, 2, 3, 4, 5 };

LowHighSwap.doIt(dizi);

for(int j = 0; j < dizi.length; j++)

System.out.print(dizi[j] + " ");

}

}

class LowHighSwap {

static void doIt(int[] z) {

int temp = z[z.length - 1];

z[z.length - 1] = z[0];

z[0] = temp;

}

}

/* Using static has nothing to do with the

* "call-by-value-of-references" issue. */

5 2 3 4 1

• The output:

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 31

61

ALTERING THE CONTROL FLOW

DECISION MAKING – THE IF STATEMENT

if (condition) {...} else if (condition) {...} ... else (condition) {...}

• About the condition part:

• Comparison: < > <= >= == !=

• Double operator is used in logical operations: && ||

LOOPS

for(initialStatement; conditionStatement; incrementStatement) { ... }

while(condition) { ... }

do { ... } while(condition);

switch / case ...

• The structures you are familiar with since BBG2 also exists in Java with

similar syntax.

• A short summary is given below. Refer to a Java book if you feel yourself

uncomfortable with these satements.

62This slide is intentionally left blank

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 32

63

BLM 2012 OBJECT ORIENTED PROGRAMMING LECTURE NOTES

Assist. Prof. Dr. Yunus Emre SELÇUK

RELATIONSHIPS BETWEEN OBJECTS AND CLASSES

RELATIONS BETWEEN OBJECTS

RELATIONS BETWEEN OBJECTS

• We have learned that an object oriented program executes, i.e. runs, by

sending messages to objects.

• In order to have an object to send a message to (i.e. use) another object,

there must be some kind of relationship between these objects.

• Types of relations:

• Association

• Dependency

• Aggregation

• Composition

• Inheritance

• These relations are shown in class diagrams but they should actually be

read as relations between instances of classes, i.e. objects.

64

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 33

RELATIONS BETWEEN OBJECTS

ASSOCIATION

• The essence of association is ownership.

• The object that can send a message has the receiver of the message as a

member field.

65

• Example: A customer and his/her orders

• The logical name and the quantities of the relation are also shown in

this diagram.

RELATIONS BETWEEN OBJECTS

ASSOCIATION

• Representation:

A B

Association

name

A B

A owns B = instances of A

can send messages to

instances of B

A B

A owns B and B

owns A = two-way

connection

• The direction of the Arrow is important, it determines who can send

messages to whom.

• If no arrows are drawn, this means:

• either there is a two-way connection,

• or the direction has not been considered by the architect yet.

B
* 0 or more B

1..11 from 1 to 111
B only 1B

1..* 1 or more

• There may be numbers on the edges of the relation.

• These numbers represent cardinality,

• i.e. they show the number of objects at that edge's side.

66

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 34

RELATIONS BETWEEN OBJECTS

HIDDEN INFORMATION

• If a relation is shown by lines and arrows, you may omit the details within a

class.

• i.e., the two diagrams below are the same.

DEPENDENCY

A depends on B = instances of A can

send messages to instances of B in

the body of aMethod.

• The essence of dependency is either being a parameter of a method or

temporary usage, without ownership.

• Representation:

67

68

CODING THE RELATIONS BETWEEN OBJECTS

ASSOCIATION : ONE WAY

• Let's create a domain model where each person can have a car…

• …and include a program that

uses the domain model (must

have a main method in order to

be run).

• The domain model and the

program should reside in

different packets.

• Question: Why 0..1 at the

association?

• Hidden information: Check the

constructor of class Car.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 35

69

• Source code of class Car:

package nyp02;

public class Car {

private String plate;

public Car(String plateNr) {

plate = plateNr;

}

public String getPlate() {

return plate;

}

}

• According to the code, a license plate number is assigned to a car when its

created and this number cannot be changed.

• This was easy, lets move on to the class Person:

CODING THE RELATIONS BETWEEN OBJECTS

ASSOCIATION : ONE WAY

70

• Source code of class Person:

package nyp02;

public class Person {

private String name;

private Car car;

public Person(String name) {

this.name = name;

}

public String getName() { return name; }

public Car getCar() { return car; }

public void setCar(Car car) { this.car = car; }

public String introduceSelf() {

String intro;

intro = "Hello, my name is " + getName();

if(car != null)

intro += "and I have a car with license plate "

+ car.getPlate()+ ".";

return intro;

}

}

Attention!

CODING THE RELATIONS BETWEEN OBJECTS

ASSOCIATION : ONE WAY

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 36

• Did you notice in the class diagram that the Car end of the ownership relation

between Person and Car is 0..1?

• This means that not every person may have a car.

• Moreover:

• When you add a method to a class, there is no guarantee (*) about in

what order the methods will run. They may even not be run anyway.

• (*) except the special rules about constructors and the finalizer.

• As a result, one may create a person but he/she does not have to assign a

car to that person.

• How can one learn the license plate of his/her car when there is not any?

• In this case, you will encounter with a "NullPointerException" error.

• Our responsibility is to create solid (without errors and resistant to bugs)

code. Therefore:

• We should check whether a person has a car or not. We should

access the license plate of his/her car only if he/she has a car.

• If a person does not have a car, the value of that member field
is null, meaning that this field is not assigned yet, i.e. it is not

initialized.
71

CODING THE RELATIONS BETWEEN OBJECTS

ASSOCIATION : ONE WAY

CODING THE RELATIONS BETWEEN OBJECTS

TESTING FOR INITIALIZATION

• When an object is initialized, we can say that this object is now active.

• We can check whether an object1 is initialized or not as follows:

72

Expression Value

Initialized

(active)

object1 == null false

object1 != null true

Not initialized

(inactive)

object1 == null true

object1 != null false

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 37

73

• We can code the MainProgram01 at last:

package nyp02;

public class MainProgram01 {

public static void main(String[] args) {

Person oktay;

oktay = new Person("Oktay Sinanoğlu");

Car rover = new Car("34 OS 1934");

oktay.setCar(rover);

System.out.println(oktay.introduceSelf());

Person aziz = new Person("Aziz Sancar");

System.out.println(aziz.introduceSelf());

}

}

CODING THE RELATIONS BETWEEN OBJECTS

ASSOCIATION : ONE WAY

• Sequence diagram of Person.introduceSelf() method:

74

CODING THE RELATIONS BETWEEN OBJECTS

ASSOCIATION : ONE WAY

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 38

• The sequence diagram for the execution of MainProgram01

75

HIDDEN INFORMATION

• Some implementation details may be hidden in class diagrams.

• In the 3 groups below, the pair on top implies the pair on bottom

76

RELATIONS BETWEEN OBJECTS

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 39

77

ASSOCIATION : TWO WAY

• If we need to be able to find out the owner of a car, as well as being able to

assign a car to a person, a two-way association must be constructed.

CODING THE RELATIONS BETWEEN OBJECTS

78

ASSOCIATION : TWO WAY

• Have you noticed the differences between one-way and two-way associations

in the respective class schemas ?

• We had to change the Car class.

• The class Person stayed the same.

• We have put the new example into a different package as the Car class

needed to be changed.

• About 0..1 on Person side:

• A car object can be created without an owner in current design (because

of Car(plate:String) constructor.

• Do not be confused: 0..1 on Person side means that zero or more person

can be associated with a car, that 0..1 is the quantity of car objects.

CODING THE RELATIONS BETWEEN OBJECTS

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 40

79

ASSOCIATION : TWO WAY

• The source code of the new Car class:

package nyp03;

public class Car {

private String plate;

private Person owner;

public Car(String plate) { this.plate = plate; }

public Car(String plate, Person owner) {

this.plate = plate;

this.owner = owner;

}

public void setOwner(Person owner) { this.owner = owner; }

public Person getOwner() { return owner; }

public String getPlate() { return plate; }

public void setPlate(String plate) { this.plate = plate; }

public String introduceSelf() {

String intro;

intro = "[CAR] My license plate is " + getPlate();

if(owner != null)

intro += " and my owner is " + owner.getName();

return intro;

}

}

CODING THE RELATIONS BETWEEN OBJECTS

Attention!

80

ASSOCIATION : TWO WAY

• Why did we have to code the if statement emphasized with the red?

• Answer: Because one may call the constructor Car(String) and forget to

call the setOwner method.

• Should we remove the Car(String plate) constructor then?

• No, a car does not have an owner in the real world as soon as it

gets out of the factory.

CODING THE RELATIONS BETWEEN OBJECTS

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 41

81

ASSOCIATION : TWO WAY

• Let's try what we have done by coding a main method:

package nyp03;

public class MainProgram02 {

public static void main(String[] args) {

Person oktay = new Person("Oktay Sinanoğlu");

Car rover = new Car("06 OS 1934");

oktay.setCar(rover);

rover.setOwner(oktay);

System.out.println(oktay.introduceSelf());

System.out.println(rover.introduceSelf());

Person aziz = new Person("Aziz Sancar");

Car honda = new Car("47 AZ 1946");

aziz.setCar(honda);

honda.setOwner(aziz);

System.out.println(aziz.introduceSelf());

System.out.println(honda.introduceSelf());

}

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

CODING THE RELATIONS BETWEEN OBJECTS

82

ASSOCIATION : TWO WAY

CODING THE RELATIONS BETWEEN OBJECTS

• Can you see a problem in the main method?

• Why do we have to code both the lines 6 and 7?

• What if we forget writing any of those lines?

• What if we mistakenly make a crossover between (oktay, rover) – (aziz,

honda)?

• etc.

• All those defects can be removed by making the two-way association

stronger.

• Which parts of the program should we change?

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 42

package nyp03b;

public class Person {

/*the rest is the same*/

public void setCar(Car car) {

this.car = car;

if(car.getOwner() != this)

car.setOwner(this);

}

}

package nyp03b;

public class Car {

/*the rest is the same*/

public void setOwner(Person owner) {

this.owner = owner;

if(owner.getCar() != this)

owner.setCar(this);

}

}

ASSOCIATION : TWO WAY

• Modifications to classes Person and Car (in a new package):

83

CODING THE RELATIONS BETWEEN OBJECTS

Attention!

Attention!

package nyp03c;

public class Car {

private String plate;

private Person owner;

public Car(String plate) { this.plate = plate; }

public Car(String plate, Person owner) {

this.plate = plate;

setOwner(owner);

}

public void setOwner(Person owner) { this.owner = owner; }

public Person getOwner() { return owner; }

public String getPlate() { return plate; }

public void setPlate(String plate) { this.plate = plate; }

public String introduceSelf() {

String intro;

intro = "[CAR] My license plate is " + getPlate();

if(owner != null)

intro += " and my owner is " + owner.getName();

return intro;

}

}

ASSOCIATION : TWO WAY

• We need one more modification, in Car.Car(String,Person) constructor:

84

CODING THE RELATIONS BETWEEN OBJECTS

Attention!

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 43

package nyp03c;

public class MainProgram03 {

public static void main(String[] args) {

Person oktay = new Person("Oktay Sinanoğlu");

Car rover = new Car("06 OS 1934", oktay);

System.out.println(oktay.introduceSelf());

System.out.println(rover.introduceSelf());

}

}

ASSOCIATION : TWO WAY

• We have done that modification so that the following main method will

produce a completely logical output:

85

CODING THE RELATIONS BETWEEN OBJECTS

ASSOCIATION : TWO WAY

• How about giving the same flexibility to the second constructor of class Car?

• Have the car to inform its owner in Car(String,Person)

• (Instructor does that in class)

• Results:

• Two-way relations are stronger than one-way relations but they are

harder to code.

• Therefore, if you don't need a two-way relation, code it only one way.

• What if we need it two-way later?

• Don't loose time with it, do it later. You will already be busy coding

the other requirements.

86

CODING THE RELATIONS BETWEEN OBJECTS

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 44

AGGREGATION

• Represents a weak whole-part relationship.

• Even if it is not shown in the diagrams, aggregation implies the following:

• 1 on the diamond end

• * (multiplicity) and arrow on the other end

• Agrregation is stronger than association, but only conceptually.

• It implies that this relation has stronger rules than a regular association.

• For example, a bus route consists of at least 2 stops and there are rules

for adding a new stop to a route.

• Representation:

A B

aggregation

• A instances has multiple B instances.

• A: Whole, B: Part.

87

RELATIONS BETWEEN OBJECTS

COMPOSITION

• Similar to aggregation, but represents a stronger whole-part relation.

A B

Composition

• The strength of composition over aggregation is that in composition, the part

can only belong to one whole at the same time.

• Example:

88

RELATIONS BETWEEN OBJECTS

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 45

89

CODING THE RELATIONS BETWEEN OBJECTS

1..* ASSOCIATION, AGGREGATION AND COMPOSITION

• Implementation of 1..* association, aggregation and composition is similar.

• In order to implement multiplicity, we must choose a data structure:

• Arrays, lists, stacks, queues, heaps, trees, graphs, etc.

• We will begin with arrays as using object arrays are not much different

than using, say, a float array in the C programming language.

90

CODING THE RELATIONS BETWEEN OBJECTS

COMPOSITION

• Example: Let’s create a Gallery class associated with multiple cars to be

sold.

• We will reuse the Car class, too.

• You may want to add a constructor with having only the license

plate as parameter. However, I opted for not doing this: We can

assign the gallery an owner, a Person instance, as some kind of

temporary owner.

• I opted for representing the relation between the gallery and cars with

the composition relation.

• You can choose to show this relation with 1..* association, it does

not matter.

• This example also demonstrates the arrays and the for loop.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 46

91

CODING THE RELATIONS BETWEEN OBJECTS

COMPOSITION

• UML class

diagram:

92

CODING THE RELATIONS BETWEEN OBJECTS

COMPOSITION

• Source code of the class Gallery (to be cont’d in the next slides):

package nyp04;

public class Gallery {

private String galleryName;

private Car[] cars;

private int carCount;

private Person galleryOwner;

public Gallery(String galleryName, Person galleryOwner) {

this.galleryName = galleryName; this.galleryOwner = galleryOwner;

carCount = 0;

cars = new Car[30];

}

public String getGalleryName() { return galleryName; }

public void setGalleryName(String galleryName) {

this.galleryName = galleryName;

}

public String introduceSelf() {

String intro = "This is a car gallery named "+ galleryName;

intro += ", owned by " + galleryOwner.getName();

intro += ". There are currently " + carCount + " cars to sell.";

return intro;

}

Note: No constructor is run here, this is

just a memory allocation for the array

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 47

93

CODING THE RELATIONS BETWEEN OBJECTS

COMPOSITION

• Source code of the class Gallery (cont’d):

public boolean addCar(Car aCar) {

if(!searchCar(aCar) && carCount < cars.length){

cars[carCount] = aCar;

carCount++;

return true;

}

return false;

}//end addCar

//code of class Gallery will continue in

• In the next slides (you can try coding the following by yourself first):

• It is wise to first check whether the car to be added already exists in the

array by calling another method, searchCar.

• How to sell a car? Implement the sellCar method.

• Excercise/HW: What if you need to take the money issues into account?

You can learn the size of the array

this way, but not the element

count of the array. Therefore we

don't need a variable such as

maxCar, but we need a variable

such as carCount.

Note:

public final static int maxCar = 30;

private int carCount;

94

CODING THE RELATIONS BETWEEN OBJECTS

COMPOSITION

• Source code of the class Gallery (cont’d):

public boolean searchCar(Car aCar) {

for(Car car : cars)

if(car == aCar)

return true;

return false;

}

public Car searchCar(String plate) {

for(int i = 0; i < carCount; i++)

if(cars[i].getPlate().compareTo(plate) == 0)

return cars[i];

return null;

}

• You can overload the searchCar method, too.

• Source code of the class Gallery will continue in the next slide.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 48

95

CODING THE RELATIONS BETWEEN OBJECTS

COMPOSITION

• Source code of the class Gallery (cont’d):

public Car removeCar(String plate) {

for(int i = 0; i < carCount; i++) {

if(cars[i].getPlate().compareTo(plate) == 0) {

Car theCar = cars[i];

for(int j = i; j < carCount; j++)

cars[j] = cars[j+1];

cars[carCount-1] = null; carCount--;

return theCar;

}

}

return null;

}

public boolean sellCar(String plate, Person newOwner) {

Car soldCar = removeCar(plate);

if(soldCar != null) {

soldCar.setOwner(newOwner);

return true;

}

return false;

}

} //end class Gallery

96

CODING THE RELATIONS BETWEEN OBJECTS

• Source code of the class with main method :
package nyp04;

public class MainProgram04 {

public static void main(String[] args) {

Gallery cars4U = new Gallery("Cars 4 U",

new Person("Yunus Emre Selçuk"));

Car bmw = new Car("34 RA 440", null);

Car audi = new Car("06 AC 432",null);

if(cars4U.addCar(bmw)) {

System.out.println("Adding operation succeded");

}

else { System.out.println("Adding operation failed"); }

cars4U.addCar(audi);

System.out.println(cars4U.introduceSelf());

System.out.println(bmw.introduceSelf());

if(cars4U.searchCar(bmw) == true) {

System.out.println("Search is successful");

}

else System.out.println("Search has failed");

if(cars4U.removeCar(audi.getPlate()) == audi)

System.out.println("Remove operation succeeded");

else System.out.println("Remove operation failed");

if(cars4U.searchCar(audi) == false)

System.out.println("Last operation has correctly failed");

else System.out.println("Last operation has incorrectly succeeded");

}

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 49

RELATIONS BETWEEN OBJECTS

INHERITANCE

• Real world: A child inherits genetic properties from his/her parents.

• OOP: A means of creating new classes from an existing class, in a way that

is similar with the real world. (Inheritance is in fact a class-level relation)

• Representation:

A B

Inheritance

• A:

• Parent class

• Super class

• Base class

• B:

• Child class

• Sub class

• Derived class

• Pay attention to the

direction of the arrow!

• How inheritance works:

• All member fields and methods of the parent are transferred to the child

• However, children cannot access the inherited private members

• Protected members and inheritance:

• Those members can be accessed by children but they are

inaccessible for other classes
97

RELATIONS BETWEEN OBJECTS

INHERITANCE

• Rules of the inheritance mechanism:

• Sub classes cannot reject a member from the super class.

• However, bodies of inherited methods can be changed

• This is called overriding.

• Attention: final methods cannot be overridden.

• New members can be added to sub classes.

• A sub class can be the parent of other classes. The tree structure

created this way is called as inheritance hierarchy or as inheritance tree.

• Do not make the tree too deep

• It leads to the fragile super

class problem.

• When you change the

upmost super class, this

change will affect all other

sub classes.

• This is similar to a tree that

has a rotten root, it can

easily collapse with the wind.
98

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 50

RELATIONS BETWEEN OBJECTS

INHERITANCE

• Effects of inheritance

• Inheritance is also called as the generalization – specialization relation

• The child is a specialized and more capable version of its parent.

• Likewise, the parent is a generalized version of its children with

less capabilities

• Substitutability:

• The child can be used wherever the parent is expected.

• Therefore inheritance is also called as IS-A relationship.

99

RELATIONS BETWEEN OBJECTS

INHERITANCE

• Misuse of inheritance

100

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 51

RELATIONS BETWEEN OBJECTS

INHERITANCE

• Evaluation of inheritance relationship:

• Inheritance is a class-level relationship that cannot be changed during

runtime.

• Experienced object oriented modelers choose inheritance only if there

is a clear gen-spec. relationship. Otherwise, association, composition or

aggregation is used.

• Alternatively, interface implementation can also be used (will be studied

later)

• Correct use of inheritance is an important part of every design pattern,

a subject that must be studied by people who want to be software

professionals after complete study of object orientation.

101

102

SPECIAL TOPICS in INHERITANCE

POLYMORPHISM and OVERRIDING

• An example inheritance tree is

shown on the left

• The introduceSelf() method is

overridden in the subclasses.

• Consider an array of type Person, having mixed instances of all classes above.

What happens if we run the introduceSelf method of all members in the array?

• The correct version of the introduceSelf method is executed in runtime.

• This mechanism is called polymorphism.

• In this case, what should we do if we need to access an overridden method's

previous version, i.e. as it is coded in the super class?

• We can access that particular method via the super pointer!

• We have learned that the body of an inherited method can be changed, and

this act is named overriding.

• Remember: final methods cannot be overridden.

• We have also learned that an instance of a subclass can be used wherever

an instance of its superclass is expected.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 52

103

• UML class schema of an

example which consists of:

• An inheritance tree (Person

– Employee – Manager),

• And a class using them

(Company)

SPECIAL TOPICS in INHERITANCE

POLYMORPHISM and OVERRIDING

104

• Source codes:

package nyp05;

public class Person {

private String name;

public Person(String name) { this.name = name; }

public String getName() { return name; }

}

package nyp05;

public class Employee extends Person {

private int salary;

public Employee(String name, int salary) {

super(name);

this.salary = salary;

}

public int getSalary() { return salary; }

public void setSalary(int salary) { this.salary = salary; }

}

SPECIAL TOPICS in INHERITANCE

POLYMORPHISM and OVERRIDING

Mention the

important

role of

super

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 53

105

• Source codes (continued):

package nyp05;

public class Manager extends Employee {

private int bonus;

public Manager(String name, int salary) {

super(name, salary);

bonus = 0;

}

public void setBonus(int bonus) {

this.bonus = bonus;

}

public int getSalary() {

return super.getSalary() + bonus;

}

}

SPECIAL TOPICS in INHERITANCE

POLYMORPHISM and OVERRIDING

• Attention: You can use super only once. You cannot write super.super

• Attention: The super reference must be the first statement in the

constructor..

Don't cause

an error by

writing:

super(name)

super(salary)

Remember visibility rules.

Cannot simply write:

salary + bonus

106

• Source codes (continued):

package nyp05;

public class Company {

public static void main(String[] args) {

Employee[] staff = new Employee[3];

Manager boss = new Manager("Cemalnur Sargut", 8000);

boss.setBonus(2500);

staff[0] = boss;

staff[1] = new Employee("Yaşar Nuri Öztürk", 7500);

staff[2] = new Employee("Fatih Çıtlak", 7000);

for(Employee author : staff)

System.out.println(author.getName() + " " +

author.getSalary());

}

}

• Have you noticed the syntax of the for loop?

SPECIAL TOPICS in INHERITANCE

POLYMORPHISM and OVERRIDING

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 54

• Sequence

diagram of

the main

method:

107

Draw the encompassing

rectangle versions of

the for loop, too.

108

SPECIAL TOPICS in OOP

OVERLOADING and OVERRIDING

• Do not confuse overriding and overloading:

• Override: Modifying the body of inherited method. Overriding is closely

related with inheritance.

• Overload: Have multiple methods having same names but with different

parameters. Overloading is not related with inheritance.

• Overriding example: The getSalary method in class Manager.

• Overloading example: Let's overload the constructor of the class Manager

by adding the following constructor method:

public Manager(String name, int salary, int bonus) {

super(name, salary);

this.bonus = bonus;

}

• Now the class Manager has two constructors.

• PS: Private methods of a superclass can be overridden in its subclasses.

• However, the child class cannot access to the original version of the

method in any way, such as by using the super keyword.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 55

RELATIONS BETWEEN OBJECTS

INHERITANCE

• An excerpt from a requirements documentation:

• We should keep track of the patients’ names, TC ID numbers, birth

dates and cell numbers. This information should be stored for doctors,

too.In addition, it is required by law to keep the diploma numbers of

doctors. We should keep records of treatments applied to a patient, too.

• Wrong modeling: Correct modeling:

• Patients should have treatments, not the doctors. In the incorrect case, the

treatments array is transferred to doctors because of the inheritance relation.

109

110

CODING THE RELATIONS BETWEEN OBJECTS

INHERITANCE AND THE COSMIC SUPER CLASS IN JAVA

• In Java, the class java.lang.Object is the implicit super class of all classes.

• You can override some methods of this class in your classes for your own

purposes:

• public String toString(): You can return a string representation of the

object that is easy for a person to read.
• Just as you have done in public String Car.introduceSelf()

• The advantage of overriding toString is that you can print the

instance directly.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 56

111

BLM 2012 OBJECT ORIENTED PROGRAMMING LECTURE NOTES

Assist. Prof. Dr. Yunus Emre SELÇUK

SPECIAL TOPICS in OOP

ABSTRACT CLASSES

• An abstract class is such a class that it is used as a base class and it

represents a template for its regular sub classes.

• Regular classes we have coded so far can be called concrete.

• If a class is abstract, we identify it with the keyword abstract.

• It is forbidden to create instances of an abstract class.

• One can create instances of concrete subclasses of an abstract class.

• Abstract classes can have member fields, just like the concrete classes.

• Abstract classes can have both concrete and abstract member methods.

• An abstract method has only definiton together with the keyword
abstract, it does not have a body.

• The bodies of inherited abstract methods must be defined in the concrete

subclasses.

• Otherwise, those subclasses should also be defined as abstract.

SPECIAL TOPICS in OOP

112

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 57

ABSTRACT CLASSES

• When do we need abstract classes?

• The more we climb upwards in a class hierarchy, the more the classes

become generalized. At a point, the classes may become so

generalized that we don't need them to be instantiated.

• We said that you may use an abstract class as a template. In this case:

• If you need to be make sure that a particular class must have some

particular methods, you can define these methods in an abstract

super class and you introduce an inheritance relationship between

the aforementioned classes.

• You can mark the abstract classes in UML class schemas in italics or by

adding the <<Abstract>> stereotype.

• <<…>>: This is called a stereotype and used in any kind of UML

schema whenever a symbol is used without its regular meaning.

SPECIAL TOPICS in OOP

113

ABSTRACT CLASSES

• The details of the printing process are coded in the sub classes.

• Our design allows to install multiple printers of types PCL6, PS and printers

of any other future types can be installed at the same computer. All those

different printer types can be accessed in a uniform fashion represented by

the PrintDriver class.

• In the super class, we know how to

initialize the spooler but we don't know

the exact details of the printing

process. We only know that a printer

can print documents.

• Therefore, PrintDriver instances

are of no use to us.

• However, the PrintDriver class

removes the burden of coding the

spooler initialization method from

the coders of the subclasses.

SPECIAL TOPICS in OOP

114

• Example:

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 58

ABSTRACT CLASSES

SPECIAL TOPICS in OOP

115

• Source codes of the example:

public abstract class PrintDriver {

public void initSpooler() {

/* necessary codes*/

}

public abstract void print(Document doc);

}

public class PCL6Driver extends PrintDriver {

public void print(Document doc) {

//necessary code is inserted here

}

}

MULTIPLE INHERITANCE

• If a sub class can have more than one super class, this

is called multiple inheritance.

• For example, we have classes Student and

Employee.

• Our client asked for adding an AssistantStudent

type to the software

• At the first sight, it can be convenient to create this

new class via inheriting from existing classes.

• However, multiple inheritance comes with an added

complexity, i.e. the Diamond Inheritance Problem:

• Consider the toString method, overriden in classes

Student and Employee.

• Which version of the toString method will be

inherited by our new class?

• In this case, we absolutely have to override the

toString method in the new class.

SPECIAL TOPICS in OOP

116

• Due to such added complexities, multiple inheritance is not supported in

recent languages such as Java and C#

• We can use interfaces instead! (To be studied soon)

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 59

DESIGNING AND CODING AN ABSTRACT CLASS

SPECIAL TOPICS in OOP

• Consider items for children:

• Not every item is suitable for every child.

• Toys have lower age limit, usually measured in years.

• Clothes have both lower and higher age limits, usually measured in

months.

• How should we model this case?

117

DESIGNING AND CODING AN ABSTRACT CLASS

SPECIAL TOPICS in OOP

• Source code of class Item:

118

package nyp06;
public abstract class Item {

private String barcode, description;
public Item(String barcode, String description) {

this.barcode = barcode;
this.description = description;

}
public String getBarcode() {

return barcode;
}
public String getDescription() {

return description;
}
public abstract boolean isSuitable(Child aChild);

}

• The logic for determining the suitability of an Item is different for a Toy and a

Clothing. Therefore we have left the isSuitable method as abstract here.

• However, we have coded the common operations in the abstract base class so

that we don't have to code them again in sub classes.

• "Say a word only once and at the right time! "

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 60

DESIGNING AND CODING AN ABSTRACT CLASS

SPECIAL TOPICS in OOP

• Source code of concrete subclasses:

119

package nyp06;
public class Clothing extends Item {

private int minMonthLimit, maxMonthLimit;

public Clothing(String barcode, String description,
int minMonthLimit, int maxMonthLimit) {

super(barcode, description);
this.minMonthLimit = minMonthLimit;
this.maxMonthLimit = maxMonthLimit;

}
public boolean isSuitable(Child aChild) {

if(aChild.getAgeInMonths() >= minMonthLimit
&& aChild.getAgeInMonths() <= maxMonthLimit)

return true;
return false;

}
}

DESIGNING AND CODING AN ABSTRACT CLASS

SPECIAL TOPICS in OOP

• Source code of concrete subclasses:

120

package nyp06;
public class Toy extends Item {

private int minAgeLimit;

public Toy(String barcode, String description, int minAgeLimit) {
super(barcode, description);
this.minAgeLimit = minAgeLimit;

}
public boolean isSuitable(Child aChild) {

if(aChild.getAgeInMonths()/12 >= minAgeLimit)
return true;

return false;
}

}

• You can implement the class Kindergarten with the given methods and more as

exercise

• You can build different relationships between Item instances at one end and

Kindergarten/Child at the other end(s)

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 61

INTERFACES

• Interfaces can be thought as abstract

classes without members.

• If you wish, you may add "public

final static" member fields only.

• An interface is a named collection of

methods.

• UML representation and source code

of an example:

SPECIAL TOPICS in OOP

public interface Customer {

public void buy(Good aGood, int quantity);

}

public interface Supplier {

public void sell(Good aGood, int quantity);

}

public interface Friend {

public void keep(Secret aSecret);

}

public class Person implements Customer,

Supplier, Friend {

public void buy(Good aGood, int quantity) {

//related code

}

public void sell (Good aGood, int quantity) {

// related code

}

public void keep(Secret aSecret) {

// related code

}

}

121

INTERFACES

• We use interfaces …

• in order to group responsibilites of entities,

• in order to give objects multiple views,

• instead of inheritance,

• Because inheritance is a "heavy weight" relation that should be used

only when it is absolutely necessary.

• instead of multiple inheritance.

SPECIAL TOPICS in OOP

122

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 62

INTERFACES

SPECIAL TOPICS in OOP

• Rules related to interfaces:

• A class should code the bodies of all the methods of the implemented

interfaces.

• Regular member fields cannot be defined in interfaces. Interfaces can only

have "public final static" member fields.

• Only public methods can be defined in interfaces.

• Interfaces cannot have constructors.

• A class can implement multiple interfaces.

• I suggest you to begin naming interfaces with I (capital i).

123

DESIGNING AND CODING INTERFACES

SPECIAL TOPICS in OOP

• Consider the following requirement about calculating the taxes of vehicles:

• Taxation of commercial and personal vehicles is different.

• Motorcycles, cars and buses can be registered as commercial vehicles.

• Only motorcycles and cars can be registered as personal vehicles .

• Only taxes of commercial vehicles can be amortized.

• Commercial or not, calculation of the tax of different vehicles (car, bus, etc)

are very different.

• How can we model this requirement?

124

• Hint: If the tax calculation for

different vehicles were similar

(i.e. parametrized), using one

abstract base class instead of

interfaces would be a better

choice.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 63

DESIGNING AND CODING INTERFACES

SPECIAL TOPICS in OOP

• Coding the interfaces:

125

package nyp07;
public interface CommercialVehicle {

public double calculateAmortizedTax(double baseTax, int currentYear);
}

package nyp07;
public interface PersonalVehicle {

public double calculateTax(double baseTax);
}

DESIGNING AND CODING INTERFACES

SPECIAL TOPICS in OOP

• Coding the class car:

126

package nyp07;
public class Car implements CommercialVehicle, PersonalVehicle {

private String plate;
private int modelYear;
private double engineVolume;
public Car(String plate, int modelYear, double engineVolume) {

this.plate = plate; this.modelYear = modelYear;
this.engineVolume = engineVolume;

}
public double calculateTax(double baseTax) {

return baseTax * engineVolume;
}
public double calculateAmortizedTax(double baseTax, int currentYear) {

//Tax can be reduced %10 for each year as amortization
int age = currentYear - modelYear;
if(age < 10)

return baseTax * engineVolume * (1-age*0.10);
return baseTax * engineVolume * 0.10;

}
public String getPlate() { return plate; }
public int getModelYear() { return modelYear; }
public double getEngineVolume() { return engineVolume; }

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 64

DESIGNING AND CODING INTERFACES

SPECIAL TOPICS in OOP

• Coding the class bus:

127

package nyp07;
public class Bus implements CommercialVehicle {

private String plate;
private int modelYear;
private double tonnage;
public Bus(String plate, int modelYear, double tonnage) {

this.plate = plate; this.modelYear = modelYear; this.tonnage = tonnage;
}
public double calculateAmortizedTax(double baseTax, int currentYear) {

double ratioTonnage, ratioAge;
if(tonnage < 1.0)

ratioTonnage = 1.0;
else if(tonnage < 5.0)

ratioTonnage = 1.2;
else if(tonnage < 10.0)

ratioTonnage = 1.4;
else

ratioTonnage = 1.6;
ratioAge = (currentYear - modelYear) * 0.05;
if(ratioAge > 2.0)

ratioAge = 2.0;
return baseTax * ratioTonnage * ratioAge;

}
public String getPlate() { return plate; }
public int getModelYear() { return modelYear; }
public double getEngineVolume() { return tonnage; }

}

DESIGNING AND CODING INTERFACES

SPECIAL TOPICS in OOP

• The state of a car, bus or a motorcycle instance being a personal or commercial

vehicle will be saved in a Container object:

128

• How must the logic be? How should we implement that?

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 65

DESIGNING AND CODING INTERFACES

SPECIAL TOPICS in OOP

• If the tax calculation for different vehicles were similar (i.e. parametrized), using

two abstract base classes instead of interfaces would be a better choice.

• Likewise, if the tax calculation for commercial and personal vehicles were

similar, using only one abstract base class and choosing appropriate method

parameters would be a better choice.

• Those cases are left as exercises to the students for experimenting with.

• An interface can inherit from another interface, too.

• Instead of defining the getPlate method in both CommercialVehicle and

PersonalVehicle interfaces, we can create a base interface, Vehicle, and let

the other two interfaces extend that.

129

PRIMITIVE ENUMERATIONS (ENUMs)

SPECIAL TOPICS in OOP

130

• The primitive version of Enum classes:

• Sometimes, a variable should only hold a restricted set of values.

• For example, you may sell pizza in four sizes: small, medium, large,

and extra large

• Of course, you could encode these sizes as integers 1, 2, 3, 4, or

characters S, M, L, and X.

• But that is an error-prone setup. It is too easy for a variable to hold

a wrong value (such as 0 or m).

• Example:

• Defining a primitive enum (in Size.java):

public enum Size {

SMALL, MEDIUM, LARGE, EXTRA_LARGE;

}

• Using in code:

Size s = Size.MEDIUM;

• In fact, we have defined a class named Size and enforced that only four

static instances of that class can be created.

• You cannot write Size s = Size.Medium or MEDIUM or M …

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 66

ENUM CLASSES

SPECIAL TOPICS in OOP

131

• The primitive enum we have learned is in fact a class definition.

• Each member of an enum is an instance of that class.

• There cannot be any other members of an enum except the ones that are

already defined.

• An enum type can member fields, methods and constructors as any other

regular classes.

• The constructor of an enum class must be private.

• Example:

package nyp08;

public enum Tariff {

NETFREE(0,4,60), NET4(4,8,30), NET6(6,8,40);

private int quota, speed, fee;

private Tariff(int quota, int speed, int fee) {

this.quota = quota; this.speed = speed; this.fee = fee;

}

public int getQuota() { return quota; }

public int getSpeed() { return speed; }

public int getFee() { return fee; }

}

This must be the first line of code!

132

• Example:

ENUM CLASSES

SPECIAL TOPICS in OOP

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 67

133

• Creating and using an enum object:

public class Test {

public static void main(String[] args) {

Tariff tariff4 = Tariff.NET4;

Person yunus = new Person("Yunus Emre");

yunus.subscribeTo(tariff4);

Person berkin = new Person("Berkin Gülay");

berkin.subscribeTo(Tariff.NETFREE);

System.out.println(yunus);

System.out.println(berkin);

}

}

ENUM CLASSES

SPECIAL TOPICS in OOP

134This slide is intentionally left blank

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 68

135

BLM 2012 OBJECT ORIENTED PROGRAMMING LECTURE NOTES

Assist. Prof. Dr. Yunus Emre SELÇUK

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

136

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• Generic programming means to write code that can be reused for objects of

many different types.

• Recent languages such as Java and C# support generics.

• Generics are, at least on the surface, similar to templates in C++.

• The aim of this section is to make you familiar with the usage of generic

classess.

• We will try to reach this aim by teaching you how to use some of the

generic classes that comes with the Java language.

• We have chosen the examples from the basic data structures in the

java.util library.

• Therefore, an introduction to these data structures exists in the course

notes.

• The aim of this section is not to:

• Teach you how to write your own generic classes.

• Teach you about data structures.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 69

137

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• Introduction to Data Structures:

• A data structure is a scheme for organizing data in the memory of a

computer

• In a general sense, any data representation is a data structure.

• Example: An integer.

• More typically, a data structure is meant to be an organization for a

collection of data items.

• The way in which the data is organized affects the performance of a

program for different tasks.

• The choice of data structure and algorithm can make the difference

between a program running in a few seconds or many days!

• Some of the more commonly used data structures include arrays, lists,

stacks, queues, heaps, trees, and graphs.

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• Introduction to linked lists:

• Linear collection of self-referential class objects, called nodes

• Connected by pointer links (transparent to the programming user in

Java)

• The first (head) and last (tail) nodes of the list are accessed via an

object reference

• Traversing between the nodes is done by using an iterator object

obtained from the data structure

• You may write your own traversal code according to the

organization of the data structure.

• Traversing an entire list is easier (thanks to the for-each loop).

138

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 70

139

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• An example linked list holding Integer objects:

15

10

NULL pointer

(points to nothing)

(end of list)

49 73

87

An element

(an object)

and pointer

Head

node

Tail node

140

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• Advantages of linked lists over arrays:

• Enlarging a list costs nothing!

• Insertion and removal of elements to any position is faster.

• Sorting algorithms work faster on linked lists.

• Advantage of arrays over linked lists:

• Lists are traversed sequentially where any ith member of an array is

directly accessible.

• Types of linked lists:

• Single-linked list: Only traversed in one direction

• Doubly-linked list: Allows traversals both forwards and backwards

• A list may also be circular.

• Pointer in the last node points back to the first node (like prayer beads)

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 71

141

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

ArrayList myList = new ArrayList();

• In such definition, the nodes are instances of Object.

• This makes typecasting mandatory in order to use the node objects.

• Luckily, support for 'Generic Programming' is introduced in JSE 5.0.

• Generic programming means to write code that can be reused for objects

of many different types.

• For example, you don’t want to program or use separate classes to

collect String and File objects.

• And you don’t have to!

• The single class ArrayList collects objects of any class and

constitutes an example of generic programming.

• Example: Creating an ArrayList instance which will contain Person instances

• An example list implementation in java: The java.util.ArrayList class

• Based on arrays, single-linked, thread-unsafe.

• Initialization:

ArrayList<Person> liste = new ArrayList<Person>();

142

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• Fundamental methods of the ArrayList class:

• add(<T> object): Adds an element (an object of type T) to the end of

the list.

• <T> get(int i): Returns the ith element.

• int size(): Returns the number of elements in this list

• Remember that the entire list can be easily traversed by using the for-

each loop.

• A selection of the other methods of the ArrayList class:

• ensureCapacity(int size): Increases the capacity of this ArrayList

instance, if necessary.

• trimToSize(): Trims the capacity of this ArrayList instance to be the list's

current size.

• set(int i, <T> element): Replaces the element at the specified position

in this list with the specified element.

• remove(int i): Removes the ith element from this list

• If the current size is less than i, an IndexOutOfBoundsException is

throwed (unchecked).

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 72

143

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• Part of the inheritance tree of list structures in Java:

144

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• Let's implement a multiplicty association (1-*) by using ArrayList

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 73

145

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

package nyp09a;

import java.util.*;

public class Course {

private String code; private String name; private int capacity;

private ArrayList<Student> students;

public Course(String code, String name, int capacity) {

this.code = code; this.name = name; this.capacity = capacity;

students = new ArrayList<Student>();

}

public String getCode() { return code; }

public String getName() { return name; }

public int getCapacity() { return capacity; }

public int getStudentCount() {

return students.size();

}

public boolean addStudent(Student aStudent) {

if(getStudentCount() == capacity ||

findStudent(aStudent.getNumber()) != null)

return false;

students.add(aStudent);

return true;

}

146

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

public Student findStudent(String number) {

for(Student aStudent : students)

if(aStudent.getNumber().compareTo(number) == 0)

return aStudent;

return null;

}

public void increaseCapacity(int newCapacity) {

if(newCapacity <= capacity)

return;

capacity = newCapacity;

}

public void showClassList() {

System.out.println("Class List of "+code+" "+name);

System.out.println("Student# Name, Surname");

System.out.println("-------- -----------------------------");

for(Student aStudent : students)

System.out.println(aStudent.getNumber()+

" " + aStudent.getName());

}

}

• Please compare this code with the ones you can write by using arrays and

see how much cleaner your code has become (show from nyp09x).

• In this example, the member "capacity" exists only for business logic,

not for array operations.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 74

147

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

package nyp09x;
public class Course {

private String code; private String name; private int capacity, studentCount;
private Student[] students;
public Course(String code, String name, int capacity) {

this.code = code; this.name = name; this.capacity = capacity;
students = new Student[capacity]; studentCount = 0;

}
public String getCode() { return code; }
public String getName() { return name; }
public int getCapacity() { return capacity; }
public int getStudentCount() { return studentCount; }
public boolean addStudent(Student aStudent) {

if(studentCount == capacity || findStudent(aStudent.getNumber()) != null)
return false;

students[studentCount] = aStudent;
studentCount++;
return true;

}
public Student findStudent(String number) {

for(int i = 0; i < studentCount; i++)
if(students[i].getNumber().compareTo(number) == 0)

return students[i];
return null;

}

• Continues on the next slide

148

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

public void increaseCapacity(int newCapacity) {
if(newCapacity <= capacity)

return;
Student[] geciciDizi = new Student[newCapacity];
for(int i = 0; i < studentCount; i++)

geciciDizi[i] = students[i];
students = geciciDizi;
capacity = newCapacity;

}
public void showClassList() {

System.out.println("Class List of "+code+" "+name);
System.out.println("Student# Name, Surname");
System.out.println("-------- -------------------------------");
for(Student aStudent : students)

if(aStudent != null) //dizi gerçeklemesinde gerekli!
System.out.println(aStudent.getNumber()+" "+aStudent.getName());

}
}

• Continued from the next slide

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 75

149

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

public class USIS {
public static void main(String[] args) {

Course oop = new Course("0112562", "Obj. Or. Prog.", 3);
Student yasar = new Student("09011034","Yaşar Nuri Öztürk");
if(!oop.addStudent(yasar))
System.out.println("Problem #1");
boolean result;
result = oop.addStudent(yasar);
if(result == true)

System.out.println("Problem #2");
Student yunus = new Student("09011045","Yunus Emre Selçuk");
oop.addStudent(yunus);
Student fatih = new Student("09011046","Fatih Çıtlak");
oop.addStudent(fatih);
Student cemalnur = new Student("09011047","Cemalnur Sargut");
if(oop.addStudent(cemalnur))

System.out.println("Problem #3");
if(oop.findStudent("09011046") != fatih)

System.out.println("Problem #4");
if(oop.findStudent(fatih.getNumber()) == null)

System.out.println("Problem #5");
System.out.println("End of test\n");
oop.showClassList();

}
}

• Now, let’s demonstrate and test our code:

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• Introduction to map structures:

• The map data structure lets you to easily reach an existing element

according to its unique identifier

• This operation is also much faster with map structures than with

array and list structures

• Element = value, unique identifier = key

150

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 76

151

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• A map implementation in Java: The java.util.HashMap class

• java.util.HashMap<K,V>

• K: Key, V: Value

• Fundamental methods of the HashMap class :

• public V get(Object key);

• Returns the value to which the specified key is mapped.

• public V put(K key, V value);

• Associates the specified value with the specified key in this map.

• I suggest you to obtain the key from the value (by using the

necessary get method to access its unique identifier).

• If a value already exists in the data structure with the given

key, the old value is deleted and returned, whereas the new

value is inserted into the collection.

• public Collection<V> values();

• Returns a list of all values stored in this table which can easily be

traversed by using the for-each loop.

• At this point, it is not necessary to know the specifics of the generic

Collection interface.

152

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

• Let's implement the previous example by using HashMap:

package nyp09b;

import java.util.*;

public class Course {

private String code; private String name; private int capacity;

private HashMap<String,Student> students;

public Course(String code, String name, int capacity) {

this.code = code; this.name = name; this.capacity = capacity;

students = new HashMap<String,Student>();

}

public String getCode() { return code; }

public String getName() { return name; }

public int getCapacity() { return capacity; }

public int getStudentCount() {

return students.size();

}

public boolean addStudent(Student aStudent) {

if(getStudentCount() == capacity ||

findStudent(aStudent.getNumber()) != null)

return false;

students.put(aStudent.getNumber(), aStudent);

return true;

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 77

153

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

public Student findStudent(String number) {

return students.get(number);

}

public void increaseCapacity(int newCapacity) {

if(newCapacity <= capacity)

return;

capacity = newCapacity;

}

public void showClassList() {

System.out.println("Class List of "+code+" "+name);

System.out.println("Student# Name, Surname");

System.out.println("-------- -----------------------------");

for(Student aStudent : students.values())

System.out.println(aStudent.getNumber()+

" " + aStudent.getName());

}

}

• Please compare this code which uses maps with the previous one which

uses lists and notice the conveniences for the programmer.

154

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

TESTING

• We wrote some code, but we didn't test it for bugs. Let's do it:

public class USIS {

public static void main(String[] args) {

Course oop = new Course("0112562", "Obj. Or. Prog.", 3);

Student yasar = new Student("09011034","Yaşar Nuri Öztürk");

if(!oop.addStudent(yasar))

System.out.println("Problem #1");

if(oop.addStudent(yasar))

System.out.println("Problem #2");

Student yunus = new Student("09011045","Yunus Emre Selçuk");

oop.addStudent(yunus);

Student fatih = new Student("09011046","Fatih Çıtlak");

oop.addStudent(fatih);

Student cemalnur = new Student("09011047","Cemalnur Sargut");

if(oop.addStudent(cemalnur))

System.out.println("Problem #3");

if(oop.findStudent("09011046") != fatih)

System.out.println("Problem #4");

System.out.println("End of test");

}

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 78

155

• java.util.LinkedList<E> implements List<E>

• Faster insertions and deletions

• Slower random access

• Doubly-linked (Can be traversed backwards by obtaining a ListIterator

instance [not to be covered?]).

• java.util.ArrayList<E> implements List<E>

• Slower insertions and deletions

• Faster random access

• java.util.Vector<E> implements List<E>

• Similar to ArrayList

• synchronized

• Suitable for multi-threaded use, slower in single-threaded use

• java.util.HashMap<K,V> implements Map<K,V>

• Used for fast searches by a key (indexed)

• java.util.Hashtable<K,V> implements Map<K,V>

• Similar to HashMap but synchronized

• Suitable for multi-threaded use, slower in single-threaded use

• Attention: Lowercase t in class name Hashtable

SUMMARY OF FUNDAMENTAL DATA STRUCTURE IMPLEMENTATIONS:

INTRO. GENERIC CLASSES and DATA STRUCTURES in JAVA

155

156This slide is intentionally left blank

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 79

157

BLM 2012 OBJECT ORIENTED PROGRAMMING LECTURE NOTES

Assist. Prof. Dr. Yunus Emre SELÇUK

EXCEPTION HANDLING

158

EXCEPTION HANDLING

• "If that guy has any way of making a mistake, he will"

• Murphy's Law

• Some sources of error are:

• Bugs in JVM

• Wrong input by the user

• Buggy code written by us

• Acts of God

• A lone and humble programmer cannot control:

• every aspect of Internet traffic,

• file access rights,

• etc.

• But we should be aware of them and deal with them!

• There are multiple ways of dealing with errors.

• Boolean returns

• Form components with error checking mechanisms

• Exception handling.

• Exception handling is a form of error trapping.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 80

159

EXCEPTION HANDLING

• Each is modeled by a class in Java.

160

EXCEPTION HANDLING

• java.lang.Error:

• indicates serious problems that a reasonable application should not try

to catch

• Depletion of system resources, internal JVM bugs, etc.

• java.lang.UnsupportedClassVersionError: Can happen when you

move your code between different versions of Eclipse.

• java.lang.RuntimeException:

• This is mostly caused by our buggy code

• java.lang.NullPointerException: We have tried to use an

uninitialized object

• java.lang.IndexOutOfBoundsException: We have tried to access a

non-existent member of an array.

• etc.

• java.io.IOException:

• Something went wrong during a file operation or a network operation.

• These operations are always risky, so we must have an alternate plan

in case of something goes wrong.

• If having an alternate plan is a must, than the exception is

determined as checked.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 81

161

EXCEPTION HANDLING

• Handling checked exceptions is done by coding a try – catch block.

try {

/* error-prone methods */;

}

catch(AnException e) {

/* Dealing with error */

}

• A programmer may opt to not handle a checked exception.

• However, someone will eventually handle it!

aMethod(…) throws AnException {

/* error-prone methods */

}

• In this case, this someone is the one who calls that aMethod

162

EXCEPTION HANDLING

• It is possible to handle multiple exceptions as well:

try {

/* error-prone methods */;

}

catch(AnException e) {

/* Dealing with error */

}

catch(AnotherException e) {

/* Dealing with error */

}

• About try blocks:

• Each new try block introduces a runtime overhead

• Therefore it's wiser to open one try block with multiple catch blocks

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 82

163

EXCEPTION HANDLING

• What should I do in a catch block?

• Inform the user about the error with the e.printStackTrace() method.

• Log this error

• If this is a very serious error, you may release some resources and make a

"clean exit" in the finally block.

• Scopes of the try block and the finally block are different. Therefore you

cannot access the temporary variables/objects defined in the try block

from the finally block. Plan your "clean exit" accordingly.

• The finally block executes whether an exception is thrown or not.

try {

/* error-prone methods */;

}

catch(AnException e) {

/* Dealing with error */

}

catch(AnotherException e) {

/* Dealing with error */

}

finally {

/* make a clean exit */

}

164

EXCEPTION HANDLING
public class ExceptionExample01 {

MyScreenRenderer graphics;

MyCADfile myFile;

//Other methods of this class are omitted

public void parseMyCADfile(String fileName) {

try {

graphics = new MyScreenRenderer();

myFile = openFile(fileName);

MyFigure figs[] = myFile.readFromFile();

drawFigures(figs);

myFile.close();

}

catch(IOException e) {

System.out.println("An IO exception has occurred"+

" while opening or reading from file:"+

e.toString());

e.printStackTrace();

System.exit(1); //Multithreaded, allows finally to be run

}

finally {

graphics.releaseSources();

}

}

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 83

165

EXCEPTION HANDLING

• You can create your own Exception classes by :

• inheriting from IOException if you want your exception to be a checked

one,

• inheriting from RuntimeException if you want an unchecked one.

public class MyFileFormatException extends IOException {

public MyFileFormatException() {

super();

} //was required in JDK versions older than 5

public MyFileFormatException(String errorMessage) {

super(errorMessage);

/* Other things to do (optional) */

} //necessary for informing the user and/or programmer

}

166

EXCEPTION HANDLING

• Throwing an exception:

• If something terrible may happen during your code, you can throw an

exception

public class AProgram {

public void processFile () throws MyFileFormatException{

some_statements();

if(an_unexpected_situation)

throw new MyFileFormatException("... happened");

}

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 84

167

EXCEPTION HANDLING

package nyp10;

import java.io.IOException;

/* @home: Check the needed additions

* if we had extended this exception

* from java.lang.RuntimeException

*/

@SuppressWarnings("serial")

public class ImpossibleInfo extends IOException {

public ImpossibleInfo(String errorMessage) {

super(errorMessage);

}

}

}

• Let's wrap it up all by an example:

168

EXCEPTION HANDLING

package nyp10;

public class Person {

private String name;

private int age;

public Person(String name) { this.name = name; }

public String getName() { return name; }

public int getAge() { return age; }

public String toString() {

return getName() + " " + getAge();

}

public void setAge(int age) throws ImpossibleInfo {

if(age < 0 || age > 150)

throw new ImpossibleInfo("Impossible age: "+age);

this.age = age;

}

}

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 85

169

EXCEPTION HANDLING
package nyp10;

import java.util.*;

public class TestExceptions {

public static void main(String[] args) {

Scanner in = new Scanner(System.in);

System.out.print("Enter person's name: ");

String name = in.nextLine();

Person insan = new Person(name);

try {

System.out.print("Enter age: ");

int age = in.nextInt();

insan.setAge(age);

System.out.println(insan);

}

catch (ImpossibleInfo e) {

e.printStackTrace();

}

finally {

in.close();

}

}

}

• You can wrap the statement that can cause an exception and the remaining statements with the try block or you

can put all statements into the try block.

Exercise: Check for too short names

170This slide is intentionally left blank

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 86

171

BLM 2012 OBJECT ORIENTED PROGRAMMING LECTURE NOTES

Assist. Prof. Dr. Yunus Emre SELÇUK

TYPECASTING

• Remember the following rule of inheritance:

• An instance of a sub class can be used wherever an instance of its super

class is expected.

• This is a type-safe operation and it is done automatically.

• We can convert a specific object to a more general one without loosing

any information.

• Conversion in the opposite direction is risky, therefore it is done manually.

• The Java terminology uses the word "type casting" for converting the type of

an object.

• You can make a manual cast from one type to another, according to the

following rules:

• From the interface to the class of the object

• From the super class to the sub class

• However, this is an unsafe operation and therefore you need to make a

check beforehand

TYPECASTING

172

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 87

• Example:

TYPECASTING

173

TYPECASTING

package nyp11;

import java.util.*;

public class MarketShelf {

private LinkedList<Item> items;

public MarketShelf() {

items = new LinkedList<Item>();

}

public boolean doesExist(Item anItem) {

for(Item item : items)

if(item == anItem)

return true;

return false;

}

public boolean addItem(Item anItem) {

if(doesExist(anItem))

return false;

items.add(anItem);

return true;

}

• Coding class MarketShelf:

174

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 88

TYPECASTING

public void printExpiredItems() {

boolean hasExpiredItem = false;

System.out.println("Expired item(s): ");

for(Item item : items) {

if(item instanceof Food)

if(((Food)item).isExpired()) {

hasExpiredItem = true;

System.out.println(item);

}

}

if(hasExpiredItem == false)

System.out.println("All items are fresh!");

}

• Checking for type compliance and typecasting

• Coding class MarketShelf:

175

TYPECASTING

public static void main(String[] args) {

MarketShelf shelf = new MarketShelf();

Calendar cal = Calendar.getInstance();

cal.add(Calendar.DAY_OF_MONTH,1);

Date future = cal.getTime();

cal.set(Calendar.YEAR, 2010);

cal.set(Calendar.MONTH, 0); //0: January

cal.set(Calendar.DATE, 13);

Date past = cal.getTime();

shelf.addItem(new Food(past));

shelf.addItem(new Food(future));

shelf.addItem(new Electronics());

shelf.checkForExpiration();

}

}

• Using java.util.Date and Calendar classes

• Coding class MarketShelf:

176

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 89

• Coding class Food:

TYPECASTING

package nyp11;

import java.util.Date;

public class Food implements Item {

private Date expireDate;

public Food(Date expireDate) {

this.expireDate = expireDate;

}

public Date getExpireDate() { return expireDate; }

public boolean isExpired() {

Date today = new Date();

if(expireDate.before(today))

return true;

else return false;

}

public String toString() {

return "A food expiring at " + expireDate;

}

}

• Using java.util.Date class continues 177

• Critique of typecasting:

• Typecasting is a "necessary evil". Use it sparingly.

• Back in the days where generic classes were not available in Java,

we had to make typecasting frequently.

• Nowadays, we need typecasting only when we make

deserialization (topic of the next lecture).

• We can always make designs without typecasting.

• Let's modify our design:

TYPECASTING

• In other cases, we can make good use of abstract classes and

polymorphism.

• In those cases, we are advised to avoid any relationship with the

subclasses. 178

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 90

179

BLM 2012 OBJECT ORIENTED PROGRAMMING LECTURE NOTES

Assist. Prof. Dr. Yunus Emre SELÇUK

WORKING WITH FILES

180

WORKING WITH FILES

RELATED EXCEPTIONS

• java.io.IOException: Represents I/O exceptions in general.

• java.io.EOFException extends IOException: Indicates that the end of file or

stream has been reached unexpectedly.

• java.io.FileNotFoundException extends IOException: Indicates that the

requested file cannot be found in the given path.

• java.lang.SecurityException extends java.lang.RuntimeException: Indicates

that the requested operation cannot be executed due to security constraints.

GENERAL INFORMATION ABOUT FILE OPERATIONS

• File operations are separated into two main groups in Java:

• File management: Opearations such as creating, renaming, deleting

files and folders.

• I/O operations.

• I/O operations are not only done with files but also with different sources

such as TPC sockets, web pages, console, etc. Therefore I/O operations:

• have been separated from file operations

• coded in the same way for all these different sources.

• This approach is in harmony with the nature of object oriented paradigm.

However, the complexity has been increased as a side effect.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 91

181

WORKING WITH FILES

FILE MANAGEMENT

• Coded by using the java.io.File class which represents both the files and the

folders in the hard drive.

• Creating a File object does not mean to create an actual file or folder.

• Creating a File object :

• Done by using the File(String fileName) constructor.

• fileName should contain both the path and the name of the file/folder.

• Full path vs. relative path.

• Using full path degrades portability

• Relativity is tricky as well: IDEs may keep source and class files

in different folders.

• Path separator:

• Windows uses \ (should be denoted as \\ in Strings), Unix uses /.

• What about portability?

• public static String File.separator

• public static char File.separatorChar

• File(String path, String name) and File(File path, String name)

constructors:

• Represents a file/folder with the given name in the folder given by the

path parameter.

182

WORKING WITH FILES

FILE MANAGEMENT

• Some methods of the class java.io.File:

• boolean exists(); tells whether the file exists or not.

• boolean isFile(); returns true if this File object represents a file, false

otherwise, i.e. this object represents a folder.

• File getParentFile(); Returns the directory where this file/folder resides.

• String getCanonicalPath() throws IOException; Returns the full path of

the file/folder, including the file name.

• boolean canRead(); Can this application read form this file?

• boolean canWrite(); Can this application write to this file?

• boolean createNewFile(); Actually creates the file.

• boolean mkdir(); Actually creates the folder.

• boolean mkdirs(); Actually creates the folder with all necessary parent

folders

• boolean renameTo(File newName); Renames the file.

• boolean delete(); Deletes the file.

• boolean returns: True if the operation is successful.

• You do not have to memorize all those methods.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 92

183

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• Any I/O source is represented as stream in Java

• Files, memory, command prompt, network, etc.

• Binary vs. Text format:

• Binary I/O is fast and efficient, but it is not easily readable by humans.

• Text I/O is the opposite.

• Random vs. Sequential access:

• Sequential access: All records are accessed from the beginning to the end

• Random access: A particular record can be accessed directly.

• Disk files are random access, but streams of data from a network are not.

• Java chains streams together for different working styles.

• We will study a mechanism which allows makes it possible to write any object

to a stream and read it again later.

• This process is called serialization in the Java terminology.

184

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• Serialization – Output operations:

• We will write entire objects to a file on disk.

• The classes of objects to be serialized should implement the

java.io.Serializable interface.

• You do not need to do anything else as the java.io.Serializable interface

does not have any methods.

• ObjectOutputStream and FileOutputStream objects are chained together

for serialization.

• Multiple objects can and should be sent to the same stream.
• About the transient keyword

• Mark a member fields of a class as transient if you do not want to

serialize it.

• You will need to do so if the class having that member has to be

serialized but you cannot mark that member’s class as Serializable.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 93

185

package nyp12a;

public class Contact implements java.io.Serializable {

private static final long serialVersionUID = 1L;

private String name, phone, eMail;

public Contact(String name) { this.name = name; }

public String getName() { return name; }

public String getPhone() { return phone; }

public void setPhone(String telefon) {

this.phone = telefon; }

public String getEMail() { return eMail; }

public void setEMail(String mail) { eMail = mail; }

public String toString() {

return name + " - " + phone + " - " + eMail;

}

}

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• Example record: the class Contact

186

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• About the lines beginning with @ :

• These are special commands called “annotations”.

• They work at the “meta” level, i.e. they contain “information about

information”.

• They give information to the IDE, compiler, another programme, etc.

about this program.

• We have used the annotation mechanism to remove the warnings.

• In fact, warnings must be taken into consideration. In the previous

examples, we have disabled these warnings with annotations.

• In the example above, we didn’t use annotation as the warning is directly

related with our current subject.

• About “marking interfaces”:

• The java.io.Serializable interface does not include any methods to be

implemented. This interface is used only for marking/highlighting the

classes where its instances are to be serialized.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 94

187

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• About the serialVersionUID member:

• private static final long serialVersionUID = 1L;

• We can give a particular version instead of 1, or we can have the IDE to

generate a unique identifier automatically.

• If we do not code this member, we can hide the related warning with the

@SuppressWarnings("serial") command.

• What does this member mean?

• There will be applications which save and load objects from different

sources.

• In time, the source code of the classes of these objects may change,

as well as the source code of the aforementioned applications.

• Different versions of all those classes can exist together. In order to

avoid incompatibilities, we need a versioning mechanism.

• This mechanism is implemented by giving a different (and possibly

increasing) serial number to classes and by checking this serial in

the applications.

188

package nyp12a;

import java.util.*;

import java.io.*;

public class CreateContacts {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.println("This program saves information of your " +

" contacts to a file on your drive.");

System.out.print("How many contacts will you enter? ");

Integer contactCount = input.nextInt();

Contact[] contacts = new Contact[contactCount];

input.nextLine();

for(int i = 0; i < contactCount; i++) {

System.out.print("What is the name of the contact #"+(i+1)+"? ");

contacts[i] = new Contact(input.nextLine());

System.out.print("What is the phone number of this contact? ");

contacts[i].setPhone(input.nextLine());

System.out.print("What is the e-mail address of this contact? ");

contacts[i].setEMail(input.nextLine());

}

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• An application for writing the objects to a file (serialization/output):

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 95

189

try {

String fileName = "contacts.dat";

ObjectOutputStream writer = new ObjectOutputStream(

new FileOutputStream(fileName));

writer.writeObject(contactCount);

for(Contact aContact : contacts)

writer.writeObject(aContact);

writer.close();

System.out.println("The information you have entered has "

+ "been successfully saved in file " + fileName);

}

catch(IOException e) {

System.out.println("An exception has occured during "

+ "writing to file.");

e.printStackTrace();

}

input.close();

}

}//HW: Do not use an array

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• Serialization example (cont’d):

190

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• Deserialization – Input operations:

• We will read entire objects form a file on disk.

• ObjectInputStream and FileInputStream objects are chained together for

deserialization.

• Typecasting is required as the objects read from a stream comes as

instances of the class Object.

• The warning “Type safety: Unchecked cast” can be suppressed by

@SuppressWarnings("unchecked")

• If these objects are to be stored in an array, we need to know how many

objects there will be.

• In the data structures that may grow dynamically, we are not faced

with this inconvenience.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 96

191

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• An application for reading the objects from a file (deserialization/input):

package nyp12a;

import java.io.*;

public class ShowContacts {

public static void main(String[] args) {

String fileName = "contacts.dat";

try {

ObjectInputStream reader = new ObjectInputStream(

new FileInputStream(fileName));

Integer contactCount = (Integer) reader.readObject();

for(int i=0; i<contactCount; i++) {

Contact aContact = (Contact)reader.readObject();

System.out.println(aContact);

}

reader.close();

}

192

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• Deserialization example (cont’d):

catch(IOException e) {

System.out.println("A file reading exception has occured.");

e.printStackTrace();

}

catch(ClassNotFoundException e) {

System.out.println("A class cast exception has occured.");

e.printStackTrace();

}

}

}//Alternative: You could populate an array, too.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 97

193

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• More on object streams:

• There is no safe and efficient way to determine whether the end of a

stream has been reached. Therefore we couldn't use a while loop such

as:

try {

ObjectInputStream reader = new ObjectInputStream(

new FileInputStream(fileName));

Contact aContact = (Contact) reader.readObject();

while(reader.hasNext()) {

System.out.println(aContact);

aContact = (Contact) reader.readObject();

}

reader.close();

}

Does not work! Removed in JDK8.

194

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• There is a method, int ObjectInputStream.available(), but this is

somewhat buggy

• http://www.coderanch.com/t/378141/java/java/EOF-ObjectInputStream

• Moreover, readObject() doesn't return null at EOF

• http://stackoverflow.com/questions/2626163/java-fileinputstream-

objectinputstream-reaches-end-of-file-eof

• You can code a solution by letting the exception to happen, and terminate the

loop in the catch block.

• However, exception handling is not invented for altering the program

flow.

• A better alternative to writing the data object count beforehand is to use only

one container object which stores references all the data objects.

• This container object will be a data structure, such as a list or a map.

• However, the objects in the container must implement the
java.io.Serializable interface.

• Will be shown in the next slide.

• If there is a relation A→B, both A and B must implement the
java.io.Serializable interface.

http://www.coderanch.com/t/378141/java/java/EOF-ObjectInputStream
http://stackoverflow.com/questions/2626163/java-fileinputstream-objectinputstream-reaches-end-of-file-eof

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 98

195

package nyp12b;

import java.util.*;

import java.io.*;

public class CreateContacts {

public static void main(String[] args) {

LinkedList<Contact> contacts = new LinkedList<Contact>();

Scanner input = new Scanner(System.in);

System.out.println("This program saves information of your " +

" contacts to a file on your drive.");

System.out.print("How many contacts will you enter? ");

int contactCount = input.nextInt();

input.nextLine();

for(int i = 0; i < contactCount; i++) {

System.out.print("What is the name of the contact #"+(i+1)+"? ");

Contact aContact = new Contact(input.nextLine());

System.out.print("What is the phone number of this contact? ");

aContact.setPhone(input.nextLine());

System.out.print("What is the e-mail address of this contact? ");

aContact.setEMail(input.nextLine());

contacts.add(aContact);

}

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• Serializing data structures (PS: Contact class stays the same):

196

try {

String fileName = "contacts.dat";

ObjectOutputStream yazici = new ObjectOutputStream(

new FileOutputStream(fileName, true));

yazici.writeObject(contacts);

yazici.close();

System.out.println("The information you have entered has "

+ "been successfully saved in file " + fileName);

}

catch(IOException e) {

System.out.println("An exception has occured during " +

"writing to file.");

e.printStackTrace();

}

input.close();

}

}

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• Serializing data structures (cont'd):

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 99

197

package nyp12b;

import java.io.*;

import java.util.*;

public class ShowContacts {

@SuppressWarnings("unchecked")

public static void main(String[] args) {

String fileName = "contacts.dat";

try {

ObjectInputStream reader = new ObjectInputStream(

new FileInputStream(fileName));

LinkedList<Contact> contacts =

(LinkedList<Contact>)reader.readObject();

for(Contact aContact : contacts) {

System.out.println(aContact);

}

reader.close();

}

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• Deserializing data structures:

198

catch(IOException e) {

System.out.println("An exception has occured during file reading.");

e.printStackTrace();

}

catch(ClassNotFoundException e) {

System.out.println("An exception has occured while processing.");

e.printStackTrace();

}

}

}

WORKING WITH FILES

I/O OPERATIONS USING STREAMS

• Deserializing data structures (cont'd.):

• What about working with text files or working in other modes?

• Refer to Vol.II of Core Java 8th ed. or any other book of your choice.

• Hint: PrintWriter and InputStreamReader streams are available for text

output and input.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 100

199

BLM 2012 OBJECT ORIENTED PROGRAMMING LECTURE NOTES

Assist. Prof. Dr. Yunus Emre SELÇUK

INNER CLASSES

200

• You can code a class within a class.

• An inner class is coded within an outer class.

• An inner class can:

• Access all members of the outer class, including the private ones.

• Be hidden from other classes of the same package, if defined as private.

• It is frequently used in form of anonymous inner classes in GUI

programming.

• Anonymous = without a name!

• You cannot:

• define a static method in a an inner class.

• An example: Person and Employee classes

INNER CLASSES

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 101

201

INNER CLASSES
package nyp13a;

public class Person {

private String name;

public Person(String name) { this.name = name; }

@SuppressWarnings("unused")

private class Employee { //begin inner class

private int salary;

public Employee(int salary) { this.salary = salary; }

public int getSalary() { return salary; }

public void setSalary(int salary) { this.salary = salary; }

public String toString() { return name + " " + salary; }

} //end inner class

public static void main(String[] args) {

Employee[] staff = new Employee[3];

Person kisi;

kisi = new Person("Osman Pamukoğlu");

staff[0] = kisi.new Employee(10000);

kisi = new Person("Nihat Genç");

staff[1] = kisi.new Employee(7500);

kisi = new Person("Barış Müstecaplıoğlu");

staff[2] = kisi.new Employee(6000);

for(Employee eleman: staff)

System.out.println(eleman);

}

}

202

• Previous example is a demonstration of how to:

• define an inner class

• access the outer object from the inner object

• The inner class in the previous example is private.

• Therefore, it is hidden from all classes, including the ones within the same

package.

• Which means, the Person.main method cannot be moved to any other

class.

• The next example will show how to access a public inner class from any other

class.

INNER CLASSES

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 102

203

INNER CLASSES

package nyp13b;

public class Person {

private String name;

public Person(String name) { this.name = name; }

public class Employee {

private int salary;

public Employee(int salary) { this.salary = salary; }

public int getSalary() { return salary; }

public void setSalary(int salary) { this.salary = salary; }

public String toString() { return name + " " + salary; }

}

}

204

INNER CLASSES

package nyp13b;

//this import is absolutely necessary

import nyp13b.Person.Employee;

public class TestInnerClassDirectly {

public static void main(String[] args) {

Employee[] staff = new Employee[3];

Person kisi;

kisi = new Person("Osman Pamukoğlu");

staff[0] = kisi.new Employee(10000);

kisi = new Person("Nihat Genç");

staff[1] = kisi.new Employee(7500);

kisi = new Person("Barış Müstecaplıoğlu");

staff[2] = kisi.new Employee(6000);

for(Employee eleman: staff)

System.out.println(eleman);

}

}

• PS: Instead of the import statement, you can write Person.Employee wherever

necessary

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 103

205

• This example shows how to access a private inner class from any other class:

• By using a public method of the outer class

• Meanwhile, we have to access the inner object from the outer object

INNER CLASSES

package nyp13c;

public class Person {

private String name;

private Employee employee;

public Person(String name) { this.name = name; }

public void enlist(int salary) {

employee = new Employee(salary); }

public String toString() {

String mesaj = name;

if(employee != null)

mesaj += " " + employee.getSalary();

return mesaj;

}

@SuppressWarnings("unused")

private class Employee {

private int salary;

public Employee(int salary) { this.salary = salary; }

public int getSalary() { return salary; }

public void setSalary(int salary) { this.salary = salary; }

}

}

206

INNER CLASSES

package nyp13c;

public class TestInnerClassViaOuterClass {

public static void main(String[] args) {

Person[] staff = new Person[3];

staff[0] = new Person("Polat Alemdar");

staff[0].enlist(10000);

staff[1] = new Person("Memati Baş");

staff[1].enlist(7000);

staff[2] = new Person("Abdülhey Çoban");

staff[2].enlist(5000);

for(Person insan: staff)

System.out.println(insan);

}

}
• You can obtain a reference to the outer class instance from the inner class

instance by:

• OuterClassName.this

• In this case, you can use Person.this from the Employee inner class.

• However, this type of access is rarely needed as the inner class instance can

use even the private methods of the outer class instance.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 104

207

BLM 2012 OBJECT ORIENTED PROGRAMMING LECTURE NOTES

Assist. Prof. Dr. Yunus Emre SELÇUK

INTRODUCTION TO MULTITHREADING

208

INTRODUCTION TO MULTITHREADING

• Multitasking, multiple processes and multithreading:

• Multitasking is the ability to have more than one program working at the

same time.

• Nowadays, you are likely to have a computer with its CPU having multiple

cores.

• Each core can execute one or more tasks, i.e. processes, depending on

the CPU architecture.

• A process can sometimes be divided into threads that may run in parallel,

i.e. concurrently running sub-processes.

• If there are enough hardware resources, i.e. cores, the time it takes to

complete a process will drop significantly.

• However, this increase in the performance will not be in the order of

the available cores.

• The concurrently running threads will sooner or later need to

synchonize with each other.

• Moreover, creating a process or a thread takes some execution

time as well.

• I have done significant simplifications while giving you this introduction!

208

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 105

209

INTRODUCTION TO MULTITHREADING

• A state diagram showing the possible states of a thread and transitions

between those states:

runnable

scheduler

new

dead

running blocked

new start

terminate

IO, sleep,

wait, join

yield,

time

slice

notify, notifyAll,

IO complete,

sleep expired,

join complete

209

210

INTRODUCTION TO MULTITHREADING

• How should a thread wait?

• If a thread is unable to continue its task because of an obstacle, that

thread should wait until the obstacle has been removed.

• Obstacle: The needed information has not arrived from: the network,

another thread, the user, etc.

• You should not do “busy waiting”, i.e. executing dummy instructions such

as running empty loops for 10.000 times.

• Instead, you should put that thread into the blocked state by using the

sleep command.

• A sleeping thread, unlike a busy waiting one, does not consume system

resources.

• A sleeping thread is at risk of becoming unable to awake.

• You must catch the java.lang.InterruptedException, which is a

checked exception.

210

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 106

211

INTRODUCTION TO MULTITHREADING

• Procedure for running a task in a separate thread:

1. Place the code for the task into the run method of a class that implements

the Runnable interface.

2. Create an object of your class

3. Create a Thread object from the Runnable

4. Start the thread by using Thread.start method (do not call the run method

directly)

• Do not code your own threads by inheriting from the Thread class.

• Otherwise you will lay your only inheritance right to waste.

• Let’s make a demonstration with a nonsense application about people

watching a match:

• Each person will shout for the team they support when he or she becomes

excited.

• There is a possibility for each person to become excited in 0-1000 ms.

• Each person become exhausted after shouting 10 times.

211

212

INTRODUCTION TO MULTITHREADING

package nyp14a;

import java.util.Random;

public class SoccerFan implements Runnable {

public final static int STEPS = 10;

public final static int DELAY = 1000;

private String teamName, shoutPhrase;

public SoccerFan(String teamName, String shoutPhrase) {

this.teamName = teamName;

this.shoutPhrase = shoutPhrase;

}

public void run() {

Random generator = new Random();

try {

for(int i = 0; i < STEPS; i++) {

System.out.println(teamName + " " + shoutPhrase);

Thread.sleep(generator.nextInt(DELAY));

}

}

catch (InterruptedException e) {

e.printStackTrace();

}

}

}
212

1. Place the code for the task into the

run method of a class that implements

the Runnable interface.

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 107

213

INTRODUCTION TO MULTITHREADING

package nyp14a;

public class Match {

public static void main(String[] args) {

Thread aThread;

aThread = new Thread(new SoccerFan("G.S.", "Rulez!"));

aThread.start();

aThread = new Thread(new SoccerFan("G.S.", "is the champ!"));

aThread.start();

aThread = new Thread(new SoccerFan("F.B.", "is no.1!"));

aThread.start();

aThread = new Thread(new SoccerFan("F.B.", "is the best!"));

aThread.start();

}

}

213

2. Create an object

of your class

3. Create a Thread object

from the Runnable

4. Start the thread by

using Thread.start

214

INTRODUCTION TO MULTITHREADING

• Thread pools:

• Running a small number of tasks in separate threads is acceptable.

• But do not forget that actual processing units in a typical CPU is rather

low, and creating a thread has also a processing cost.

• Therefore, if you are to execute a large number of tasks, you should use a

thread pool instead.

• Java provides the following interfaces and classes for this purpose:

214

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 108

215

INTRODUCTION TO MULTITHREADING

• java.util.concurrent.ExecutorService:

• public void shutdown() :

• Shuts down the executor, but allows the tasks currently in the pool to

be completed. New threads are not accepted to the pool.

• We need to use this method for a safe ending.

• public List<Runnable> shutdownNow()

• Shuts down immediately, stops the unfinished threads and returns

them in a list.

• public boolean isShutdown():

• Returns true if the executor is shut down.

• public boolean isTerminated():

• Returns true if all the tasks in the pool are terminated.

• Can be used in the main method for waiting the threads to be finished

215

• java.util.concurrent.Executor:

• public void execute(Runnable object): Executes the given task

• java.util.concurrent.Executors:

• public static ExecutorService newFixedThreadPool(nThreads : int)

• Creates a thread pool that reuses a fixed number of threads

• public static ExecutorService newCachedThreadPool()

• Creates a thread pool that creates new threads as needed, but will

reuse previously constructed threads when they are available

216

INTRODUCTION TO MULTITHREADING

• Let's modify our previous example to be run in a pool.

• The SoccerFan class will not be changed.

• Try using a fixed pool with different sizes!

package nyp14a;

import java.util.concurrent.*;

public class MatchWithPool {

public static void main(String[] args) {

ExecutorService pool = Executors.newCachedThreadPool();

pool.execute(new SoccerFan("G.S.", "Rulez!"));

pool.execute(new SoccerFan("G.S.", "is the champ!"));

pool.execute(new SoccerFan("F.B.", "is no.1!"));

pool.execute(new SoccerFan("F.B.", "is the best!"));

pool.shutdown();

}

}

216

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 109

217

INTRODUCTION TO MULTITHREADING

• Exceptions and multithreading:

• Throwing an unchecked exception from the run() method is easy.

• You cannot change the method signature of the run method to declare that

an unchecked exception can be thrown.

• To throw a checked exception from the run() method, you need to:

1. Code the multithreaded task that can throw the exception in a normal

member method
2. Declare that method as throws SomeCheckedException

3. Call that method from run() and use try/catch properly.

218

INTRODUCTION TO MULTITHREADING

• Race condition:

• In most practical multithreaded applications, two or more threads need to

share access to the same data.

• What happens if two threads have access to the same object and each

calls a method that modifies the state of the object?

• As you might imagine, the threads can step on each other’s toes!

• Depending on the order in which the data were accessed, corrupted

objects can result.

• Such a situation is often called a race condition.

218

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 110

219

INTRODUCTION TO MULTITHREADING

• Thread synchronization is needed to avoid race conditions.

• Consider the following example:

• This class diagram is descriptive enough, however, let’s write the code and

execute it.

219

220

INTRODUCTION TO MULTITHREADING

package nyp14b;

public class Account {

private double balance;

public Account(double balance) { this.balance = balance; }

public double getBalance() { return balance; }

public void withdraw(double amt){

double curBal = getBalance();

possibleDelay();

balance = curBal - amt;

}

public void deposit(double amt){

double curBal = getBalance();

possibleDelay();

balance = curBal + amt;

}

private void possibleDelay() {

try { Thread.sleep(5); }

catch (InterruptedException e) { e.printStackTrace(); }

}

}

220

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 111

221

INTRODUCTION TO MULTITHREADING

package nyp14b;

public class AccountDepositer implements Runnable {

private Account account;

private double amount;

public AccountDepositer(Account account, double amount) {

this.account = account; this.amount = amount;

}

public void run() {

account.deposit(amount);

}

}

package nyp14b;

public class AccountWithdrawer implements Runnable {

private Account account;

private double amount;

public AccountWithdrawer(Account account, double amount) {

this.account = account; this.amount = amount;

}

public void run() {

account.withdraw(amount);

}

}
221

222

INTRODUCTION TO MULTITHREADING

package nyp14b;

import java.util.concurrent.*;

public class BankSimulation {

public static void main(String[] args) {

Account anAccount = new Account(0);

System.out.println("Before: "+anAccount.getBalance());

ExecutorService executor = Executors.newCachedThreadPool();

for(int i = 0; i < 100; i++) {

AccountDepositer task=new AccountDepositer(anAccount,1);

executor.execute(task);

}

for(int i = 0; i < 50; i++) {

AccountWithdrawer task=new AccountWithdrawer(anAccount,1);

executor.execute(task);

}

executor.shutdown();

while(!executor.isTerminated());

System.out.println("After: "+anAccount.getBalance());

}

}

• What did you expect? What did you get?

222

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 112

223

bob

Client

alice

public class

AccountWithdrawer

implements Runnable

{ ...

public void run()

{

…

acct.withdraw(100);

…

}

}

BankAcct

0
balance
1000

public class BankAccount

{ private int balance;

…

public void withdraw(int amt)

{

int curBal = getBalance();

// possible delay

balance = curBal - amt;

}

}

acct

Client

acct

public class

AccountWithdrawer

implements Runnable

{ ...

public void run()

{

…

acct.withdraw(50);

…

}

}

 What can happen if two threads tried to withdraw from a

BankAccount at the same time?

alice’s copy of
curBal: 1000

balance = 1000 – 100 = 900

bob’s copy of
curBal: 1000

balance = 1000 – 50 = 950

900950

*note: each thread has its own copy of local variables and parameters,
but fields are shared between threads

INTRODUCTION TO MULTITHREADING

224

INTRODUCTION TO MULTITHREADING

• How can we prevent such a race?

• We determine the methods which can lead to a race and label them with the

keyword synchronized.

• Only one thread can execute a synchronized mehod, others wait.

package nyp14c;

public class Account {

private double balance;

public Account(double balance) { this.balance = balance; }

public synchronized void withdraw(double amt) {

double curBal = getBalance();

possibleDelay();

balance = curBal - amt;

}

public synchronized void deposit(double amt) {

double curBal = getBalance();

possibleDelay();

balance = curBal + amt;

}

public double getBalance() { return balance; }

public void possibleDelay() { /*same as the previous one */ }

}

224

Haz: Dr.Öğr.Üyesi Yunus Emre Selçuk

Object Oriented Programming (NYP)

Lecture Notes (2018-2019-2) 113

225

INTRODUCTION TO MULTITHREADING

• Other classes stay the same.

• Output:

Before: 0.0

After: 50.0

225

• About the data structures and multithreading:

• Remember the data structures section: Some data structures are thread-

safe, i.e. synchronized

• Vector<E> and Hashtable<K,V>

• Use those data structures when multithreading is to be used.

226This slide is intentionally left blank

