" J
BLM1031 YAPISAL PROGRAMLAMA — EKIM 2024

Sunan: Dr.Ogr.Uyesi Yunus Emre SELGUK
GENEL BILGILER

DERS GRUPLARI

+ Gr.1Dr. Ogretim Uyesi Yunus Emre SELCUK (YES) (Biz)
+ Gr.2 Dr. Ogretim Uyesi H. irem TURKMEN (HiT)

ILETISIM
+ lletigim bilgileri
« Oda:D-129
* e-mail: yselcuk@yildiz.edu.tr, yunus.emre.selcuk.ytu@gmail.com
+ lletisim icin 6ncelikle e-mail génderiniz, yiiz yiize gériisme igin randevu
isteyiniz.
DERS NOTLARI ve KAYNAKLAR
e https://avesis.yildiz.edu.tr/lyselcuk/dokumanlar
. Onceki katkilari icin Z. Cihan Taysi, H. irem Tirkmen, Zeyneb Kurt
hocalarimiza tesekkur ederim.
« Darnell P. A. and Margolis P. E., C: A Software Engineering Approach, 3™
ed., Springer-Verlag, 1996 (notlarin olusturuldugu asil kaynaktir).
1

" J
BLM1031 YAPISAL PROGRAMLAMA — GENEL BILGILER

BASARIM DEGERLENDIRME

* Uygulama ve lab. galismalari:
* 13/03/2024 itibariyle (1 hafta olabilir) baslar, donisimla yapilir.
» Dersi alan tim 6grenciler lab. galismalarina katiimak zorundadir.

« Arasinav: 10/04/2024 (8.hafta) (RAMAZAN BAYRAMI => DEGISECEK)

* Proje 6devi: Ayrintilar ileride duyurulacak

* Arasinav mazereti: 22/05/2024 (14.hafta) (ydnetmelik kurallari uyarinca)

* Final sinavi: Final haftasinda

« BOlimin sayfasinda duyuracagi vize ve final programlarina gére, haftalar ve
hatta glnler ile saatler degisebilir.

» Sinavlar klasik veya test usull olabilir fakat siz her zaman daha yodun olacak
klasik usule goére caligin.

* Puanlama (degisebilir):
. 1. Ara sinav %25, Lab. %15, Proje %20, Final %40
* Yapil(a)mayan degerlendirmenin not agirhgi yapilanlara paylastirilir.

Yapisal Programlama Dersi Notlari

BLM1031 YAPISAL PROGRAMLAMA — GENEL BILGILER

DERS IGERIGI

Hatirlatma: C’de veri tipleri, Bitsel islemler, Kontrol deyimleri, Déongiler, Diziler
isaretciler: isaretciler Aritmetigi, diziler ve isaretciler, Isaretci Dizileri, Karakter
Dizileri, Isaretcilerin isaretgisi

Dinamik Bellek Yénetimi ve Fonksiyonlar, Fonksiyon isaretcileri, Ozyineleme
Yerel ve Global Degiskenler, Depolayici Siniflar, Yapilar, Birlikler

Dosya islemleri

C Onislemcileri ve Makrolar

Statik ve Dinamik Kitiphaneler

BLM1031 YAPISAL PROGRAMLAMA — GENEL BILGILER

ONEMLIi SENATO KARARLARI

Ogrencinin ara sinav notunun %60'1 + Finalin %40" eger "sayisal olarak”

40"'in altinda kaliyorsa 6grenci dogrudan "FF notu" ile dersten kalmis

sayilacaktir (YN-027-YTU Onlisans ve Lisans Egitim-Ogretim Yénetmeligi,

Md. 26.e).

Yariyil sonu sinavina girmeyen dgrenciler vize notuna bakilmaksizin ilgili

dersten basarisiz (FF) sayilirlar (YO-075-YTU Sinav Yénergesi, Md. 4.2.k).

Butun égdrencilere derslere devam zorunlulugu gelmistir (dersi tekrar alanlarin

Onceki notu ne olursa olsun).

* Derslere ait devam durumu ilgili 6gretim Uyesi tarafindan yariyil sonu
sinavlari baglamadan 6nce 6grenci bilgi sisteminde ilan edilir.

« Devamsizliktan kalan 6grenciler yariyil sonu sinavina giremezler ve bu
ogrencilerin ilgili derse ait basari notu (FO) olarak bilgi sistemine islenir
(YO-075-YTU Sinav Yénergesi, Md. 4.2.h).

Yapisal Programlama Dersi Notlari

A Fast Review of C Essentials
Part |,l1

Structural Programming
by Z. Cihan TAYSI
additions by Yunus Emre SELCUK

SELF-STUDY

* Please study and remember these following topics you have learned
in your previous course (Refer to Appendix-A)

* Further slides in this section are only a selected subset.
* Program development

¢ C Essentials
 Variables & constants

* Names
* Functions ‘0 t
* Formatting perators
« Comments * expressions, precedence, associativity
* Preprocessor * Control flow
* Data types « if, nested if, switch
* Mixing types * Looping

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Functions

function function

arguments

type name

* A C function is a collection of C language operations.
* performs an operation that is more complex than any of
declarations the operations built into C language
* at the same time, a function should not be so complex that
it is difficult to understand

Cetatehents * Arguments represent data that are passed from

calling function to function being called.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Functions

* You can write your own functions and you should do so!
* Grouping statements that execute a sub-task under a
function leads to modular software
* You can reuse functions in different programs
* Functions avoid duplicate code that needs to be corrected
in multiple places of the entire program if a bug removal or
change request emerges.

* Bugs and requirement changes are inevitable in software
development!

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Functions

* You should declare a function before it can be used ...

int combination(int, int), //This is also called allusion
void aTaskThatNeedsCombination() {

//some code

c = combination(a, b);
//more code

}

int combination(int a, int b) {

//necessary code

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Functions

* ... or the required function should be completely coded
before it is called from another function.

int combination(int a, int b) {
//necessary code

}

void aTaskThatNeedsCombination() {
//some code
c = combination(a, b);
//more code

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Formatting Source Code

int square (int num) { int square {int num) {

int answer; int answer;
?

answer = num * num;
answer = num * num;

return answer; N S\
?

! }
int square (int num) {
int int square (int num)
answer; {
answer =nu int answer;
* num; answer = num * num;
return answer; (Sturmansiuer;
}

}

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

The main() Function

* All C programs must contain a function called main(), which is
always the first function executed in a C program.

* It can take two arguments but we need to learn much more before
going into details.

* When main() returns, the program is done.
* The exit() function is a runtime library

int main () { routine that causes a program to end,
/*some code */ returning control to operating system.
A * If the argument to exit() is zero, it means
exit(0); that the program is ending normally
} without errors.

/* main method can accept * Non-zero arguments indicate abnormal
P termination of the program.

parj.mjtlers, ti\elr use will be * Calling exit() from main() is exactly the
studied later */ same as executing return statement,

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Data Types

* There are 9 reserved words for scalar data types

* Basic types
¢ char, int, float, double, enum

« All declarations in a block must appear before any executable

statements

Yildiz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

« Qualifiers char double short signed
* long, short, signed, unsigned it enyim long unsigned
4 A float
* To declare j as an integer
*intj;
* You can declare variables that have the same type in a single
declaration
e intjk;

Different Types of Integers

must represent the “natural” size for computer.

4 -231t0 231-1
unsigned int 4 0to 23%-1
short int 2 -215 to 215-1
long int (just like int!) 4 -231t0 231-1
long long int (now we are talking!) 8 -264t0 264-1
unsigned short int 2 0 to 216-1
unsigned long int 4 0to 232-1
signed char 1 -27t0 27-1
unsigned char (rather meaningless) 1 0to 28-1

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

%d

%u

%hi
%li

%lli
%hu
%lu
%cC

%hhu

* The only requirement that the ANSI Standard makes is that a byte must
be at least 8 bits long, and that ints must be at least 16 bits long and

* natural: the number of bits that the CPU usually handles in a single instruction

int

Yapisal Programlama Dersi Notlari

Format Strings for Integers

* A format string determines #include <stdio.h>
the representation of a) - 5
value in output (printf) and 1"t main(int argc, char *argv[]){
. . int sayi = 65;
th interpretation of a value printf(" int \t4d\n",sayi);
in input (scanf). printf(" uns.int \t%u\n",sayi);

* Try the following code with printf(" srt.int \tkhi\n",sayi);
d'I}':c tval & printf(" 1lng.int \t%li\n",sayi);
{HEFENEVARES: printf("usrt.int \t%hu\n",sayi);

* Observe how format string printf("ulng.int \t%1lu\n",sayi);

changes output of the same RrintU char\tho\ny jsay1);
Yatible printf(" uns.char\t%hhu\n",sayi);

system("PAUSE");
return 0;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Implicit Conversions

* When the compiler encounters an expression, it divides it into
subexpressions, where each expression consists of one operator and
one or more objects, called operands, that are bound to the
operator.

*Ex:1+2.5 # involves two types, an int and a double
*Ex: —3 /4 + 2.5 #The expression contains three operators —, /, +

* Each operator has its own rules for operand type agreement, but
most binary operators require both operands to have the same type.
« If the types differ, the compiler converts one of the operands to agree with
the other one.
* For this conversion, compiler resorts to the hierarchy of data types. (Please
remember previous slide)

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Mixing Integers with Floating Types

* Invisible conversions

int j;

float f;

j+f; // jis converted to float

j+f+2.5; //jandf both converted to double
* Loss of precision

j=2.9; // i’s value is 2

j =999999999999.888888 // overflow

Yildiz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi @

Explicit Conversions - Cast

int j=2, k=3; * Explicit conversion is called
casting and is performed with a

float f;
construct called a cast

f=k/j;

* To cast an expression, enter the
target data type enclosed in
parenthesis directly before
expression

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi @

f = (float) k / ;

Yapisal Programlama Dersi Notlari

Enumeration Data Type: Move out of the
appendix section

enum { red, blue, green, yellow } color; * Enumeration types enable you to
declare variables and the set of

named constants that can be legally
stored in the variable.

enum { bright, medium, dark } intensity;

color = yellow; // OK * The default values start at zero and

color = bright; // Type conflict go up by one with each new name.

// OK * You can override default values by

intensity = bright; Y
specifying other values

intensity = blue; // Type conflict
color =1; // Type conflict
color = green + blue; // Misleading usage

Yildiz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

typedef

* typedef keyword lets you create

your own names for data types. typedeflong int INT32;

* Semantically, the variable name
becomes a synonym, alias, etc. long int j;
for the data type. INT32j;

* By convention, typedef names
are capitalized.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

10

cast & sizeof Operators

* Cast operator enables you to
convert a value to a different
type

* One of the use cases of cast is to
promote an integer to a floating
point number of ensure that the
result of a division operation is
not truncated.

*3/2
* (float)3 /2

* The sizeof operator accepts two
types of operands: an
expression or a data type

* the expression may not have
type function or void or be a bit
field !

* sizeof returns the number of
bytes that operand occupies in
memory

* sizeof (3+4) returns the size of int
* sizeof(short)

—

Memory Operators

o -ﬂﬁ-

address of Get the address of x.

dereference o Get the value of the object stored
at address a.

array elements 1 x[5] Get the value of array element 5.

dot Get the value of membery in
structure x.

right-arrow -> p->y Get the value of membery in the

_

structure pointed to by p

Yapisal Programlama Dersi Notlari

11

Increment & Decrement Operators

main () {
int j=5, k=5; Postfix
printf(“j: %d\t k : %d\n”, j++, k--);
printf(“j: %d\t k : %d\n”, j, k);
return 0;
} main () {
int j=5, k=5; Prefix
printf(“j: %d\t k : %d\n”, ++j, --k);
printf(“j: %d\t k : %d\n”, j, k);
return O;

}
They work as they are intended, even in functions like printf !

—

break & goto

* break

* When used in a loop, it causes program control jump to the statement
following the loop

* Also, we have learned about it in switch statement

* goto
* goto statement is necessary in more rudimentary languages!
* Please do NOT use it in any of your C programs.

_

Yapisal Programlama Dersi Notlari

12

Pointers and Arrays

Structural Programming
by Z. Cihan TAYSI
Additions by Yunus Emre SELCUK

Outline

* Basics

* Declaration

* How arrays stored in memory

* Initializing arrays

* Accessing array elements through pointers
* Examples

* Strings

* Multi-dimensional arrays

I

Yapisal Programlama Dersi Notlari

13

Basics

#include <stdio.h>

int main(int argc, char *argv[]) {
short i,j; //short integers
short *p; //pointer to short

i 123; //statement #1

1

j = 321; //statement #2
p = &i; //statement #3: p now shows the memory address of i
j = *p; //statement #4: * means: use the indirect (pointer) value of p

printf("i:%d j:%d\n", i, j);

i+4=2; j += 3; printf("i:%d j:%d\n", i, j); //statement #5

return 0;

}
What will happen?

Basics

Initial state:

Variable name / memory memory
symbolic name address contents

[1200
j 1202
p 1204

After statements 1-3:

Variable name / memory memory
symbolic name address contents

i 1200 123
j 1202 321
p 1204 1200

PS: 1200 is just my assumption. The exact address where these variables

will be held will be defined at runtime.

Yapisal Programlama Dersi Notlari

14

Basics

After statement 4: After statement 5:
Variable name / memory memory Variable name/ memory memory
symbolicname address contents symbolicname address contents
i 1200 123 i 1200 125
j 1202 123 j 1202 126
p 1204 1200 p 1204 1200

—

Declaration

type array

specifier name om |] A

int dailyTemp[365];
dailyTemp[0] = 18;
dailyTemp[1] = 23;

* subscripts begin at 0, not 1!

* Type can be defined as void, as done in file operations. Void
pointers will not be covered in detail.

_

Yapisal Programlama Dersi Notlari

15

How Arrays Stored in Memory

Element Address

int ar[5]; /* declaration */
ar[0] = 15;

ar[1]1=17;

ar[3] = ar[0] + ar[1];

* Note that ar[2] and ar[4] have
underined values:
* the contents of these memory
locations are whatever left over

from the previous program
execution

—

OxOFFC

ar[0] 0x1000 15
17

ar[1] 0x1004
undefined

32

ar[2] 0x1008
ar[3] 0x100C
ar[4] ox1010 JEGHECILES

0x1014

Initializing Arrays

* It is incorrect to enter more
initialization values than the
number of elements in the array

* If you enter fewer initialization
values than elements, the
remaining elements initialized
to zero.

* Note that 3.5 is converted to
the integer value 3!

* When you enter initial values,
you may omit the array size
* the compiler automatically figures
out how many elements are in
the array...

_

int a_ar[5];
intb_ar[5]={1, 2, 3.5, 4, 5};
int c_ar[5] ={1, 2, 3};

chard_ar[] ={a’, ‘b’, c’, ‘d'};

Yapisal Programlama Dersi Notlari

16

Accessing Array Elements Through Pointers

short ar[4]; float ar[5], *p;
short *p;
p=ar; // legal

p = & ar[0]; // assigns the address ar = p; // illegal
of array element O to p. &p = ar; // illegal
* p = ar; is same as above

assignment! ar++; // illegal
" ' ar[1] = *(p+3); // legal

* *(p+3) refers to the same
memory content as ar[3] pt+; // legal

* p[3] is also same as *(p+3)

int ai[4];
scanf("%d",&ai[0]);

—

Examples: Bubble Sort

* Let’s code without functions (not preferred) and with
functions (preferred)
* It will look like :

The unsorted array is: 6= 115 =3 m 1= 8 =7 22% 4
The array has become : s) lel =7 . N8 72 A4
The array has become : ERR AR N NP
The array has become : 2 e ish A B W 2 Ne
The array has become : 1) sf %6, 3% 1 g | T _# 24
The array has become : 2 356 5= 8) =T S2. W
The array has become : 1 2 6 5 8 7 3 4
The array has become : 1 m2. 6 & _.8g | 7="3A %
The array has become : U 2 % 3 Fe 8l |7 =5 =g
The array has become : VRN 5 el 7l Le?s 4
The array has become : U0t B s s 7] e s
The array has become : 1 2 4% h4h_ 7] 8 =8 5
The array has become : 1) BB o a6 || STy s
The array has become : 1 2 3 4 5 8 7 &
The array has become : 17 W23 A = 5 e, N8 Y 46
The array has become : 1l @3 w8 e W By
The array has become : ER- R - N Rl
The sorted array is : SN R R R]

* What are the advantages of functions?
* (codes\SortBu1l.c) vs (codes\SortBu2.c)

_

Yapisal Programlama Dersi Notlari

17

Examples: Selection Sort

* Let’s code with functions (codes\sortSE1.c)
* It will look like :

The unsorted array is:
The array has become :
The array has become :
The array has become :
The array has become :
The array has become :
The array has become :
The sorted array is :

PRRRRRERO
NN NN N GG
Wwwwwwww
rasRROOR
M nnem oo
dom o N NN~
NNomuaNN
PR RS

* Compare Bubble Sort with Selection Sort:
* 16 swaps vs. 6 swaps in this particular input array
* 28 vs 28 comparisons (HW: How can you count?)
* O(n2) vs O(n?)

* Can we avoid global variables?
* Yes, with function parameters (to be studied later)

e Can we sort an array of an arbitrary size?
* Yes, with dynamic memory management and pointers (to be studied |ater)

—

Strings

* Astring is an array of characters ¢ char str[] = “some text”;
terminated by a null character. « char str[10] = “yes”;
* null character is a character with
a numeric value of 0
* it is represented in C by the * char str[4] = “four”
escape sequence ‘\0’'

* char str[3] = “four”

* A string constant is any series of
characters enclosed in double
quotes

« it has datatype of array of char
and each character in the string
takes up one byte!

_

e char *ptr = “more text”;

Yapisal Programlama Dersi Notlari

String Assignments
main () {
char array[10];
char *ptr1="10 spaces"; // not uniformly supported between different C standards
char *ptr2;
array = "not OK"; // can NOT assign to an address! Does not compile (©)
array[5] = 'A"; // Buggy?! because: Array is not populated yet. So, ...
array[0] ='0"; // ... Always begin from 0 and
array[1] = 'K';
array[2] ="\0'; // use null-terminated strings where necessary
ptri[8] ="'r"; // creates a segment violation®. Buggy. See next slide.
*ptr2 = "not OK"; // Type mismatch warning. Does not compile (©)
ptr2="0K"; // not uniformly supported and would be buggy?!
} Lin DevCPP4, linker gives warning at first but if you
//see StrAsnP.prj & strAsgn.c make a second attempt, it compiles but see next
//for printouts. slide for more discussion.
String Assignments
main () {

char *ptr1="10 spaces";
ptri[8] ='r'; //does not work
*(ptr1+8) = 'r'; //does not work either

* This code does not work because char pointers that are assigned such constant
strings are handled in C as constants/literals.
¢ Literals can not modify their data, but they can modify their pointer (i.e. they are
read-only).
¢ This code results in a segment violation exception and crashes.
* What can we do?
* We can use the string class of C++ defined in <string.h> and use string objects
* We will learn object orientation later and in Java programming language
* We can use regular arrays and live with their restrictions
* We can try harder:

_

Yapisal Programlama Dersi Notlari

String Assignments

#include <stdio.h>

int main(int argc, char *argv([]) {
char *ptrl= (char*) malloc(10);
strcpy(ptrl, "10 spaces");
ptr1[8] ='r";
printf("ptrl :%s\n",ptrl);

system("pause"); return 0;

* Allocating memory in a proper way, assigning initial value with strcpy function gives us
a string that is not literal/constant.
* strcpy and some other functions will be introduced shortly.

—

Strings vs. Chars

Chars

charch =@, *p; // one byte is allocated for ‘@’
*p=1a’; // OK

p=‘a’; // lllegal

printf("%s\n",*p);

Strings

char *p = “a”; // two bytes allocated for “a”
*p="a"; // INCORRECT

p="a"; /1 OK

printf("%s\n",p);

_

Yapisal Programlama Dersi Notlari

#include <stdio.h>
#define MAX CHAR 80

char str[MAX CHAR];
printf ("Enter a string:
scanf ("%s",str) ;

printf ("You wrote:");
printf ("%s\n",str) ;
return 0;

")

Reading & Writing Strings

* You can read strings with scanf{)
function.

int main(int argc,char *argv[]){ ° thedataargument should be a pointer to

an array of characters that is long enough

to store the input string.

* after reading input characters scanf{()
automatically appends a null character to
make it a proper string

* You can write strings with printf()
function.

* the data argument should be a pointer to
a null terminated array of characters

I

* We test each element of
array, one by one, until we
reach the null character.

* it has a value of zero, making
the while condition false

* any other value of strli]
makes the while condition
true

* once the null character is
reached, we exit the while
loop and return i, which is
the last subscript value

* The strlen function is
already defined in string.h,
therefore the function on
the left is named strLen

_

String Length Function

int strLen(char *str) {
int i=0;
while(str[i] '= '\0') {
it++;
}
return i;

}

* The main method will be like :
int main () {
char strl[MAX CHAR] ;
printf ("Enter string:");
scanf ("%$s",strl) ;
printf ("Length: %d", strLen(strl));
return (0) ;

}
* Notice the underlined mappings!

Yapisal Programlama Dersi Notlari

21

Other String Functions Defined in string.h

* char* strcpy(char* szCopyTo, const char* szSource)

* char* strncpy(char* szCopyTo, const char* szSource, size_t sizeMaxCopy)
* char* strcat(char* szAddTo, const char* szAdd)

* char* strncat(char* szAddTo, const char* szAdd, size_t sizeMaxAdd)

* int strcmp(const char* sz1, const char* sz2)

* int strncmp(const char* sz1, const char* sz2, size_t sizeMaxCompare)

* etc

* You can look them up in the string.h file and in any C book/site
* copy, concatenate, compare, data type

examine codes\MoreStringOps.c for more examples

I

Pattern Matching Example

* Write a program that
* gets two strings from the user
* search the first string for an occurrence of the second
string
e if it is successful
* return byte position of the occurrence
* otherwise
*return -1

* Use pointer operations

I

Yapisal Programlama Dersi Notlari

Pattern Matching Example, Answer 1:

int indexOfVv1i(char *ptrl, char *ptr2) {
int i, matchCount = 0;
int lenl = strlen(ptrl), len2 = strlen(ptr2);
for(i=0; i<=lenl-len2; i++) {
while(*ptrl == *ptr2 && matchCount != len2) {
matchCount++; ptril++; ptr2++;

}
if(matchCount == len2) return i;
else {
ptrl -= (matchCount-1);
ptr2 -= matchCount; matchCount = 0;
¥
¥
return -1;

—

Pattern Matching Example, Answer 2:

int index0fV2(char *ptril, char *ptr2) {
char *ptr;
ptr = (char*) strstr(ptrl, ptr2);
if(ptr != NULL) return ptr-ptri;
else return -1;

}
e char* strstr (const char* szSearch, const char *szFor);

* Notice that this function of string.h returns:

* either a valid pointer to the beginning of the first occurrence of
*szFor in *szSearch

* or a null pointer

I

Yapisal Programlama Dersi Notlari

23

Pattern Matching Example, main function:

int main () {
char str1[MAX_CHAR], str2[MAX_CHAR];
printf("Enter the 1st string (Max. %d characters): ", MAX_CHAR);
scanf("%s",strl);
printf("Enter the 2nd string (Max. %d characters): ", MAX_CHAR);
scanf("%s",str2);
printf("Found at: %d", indexOfVl(stri,str2));
return(0);

I

Multi-Dimensional Arrays

* In the following, ar is a 5-element array of 3-element arrays

int ar[5][3];

* the array reference ar[1][2]

* is interpreted as *(ar[1]+2)

*» which is further expanded to *(*(ar+1)+2)

* In the following, x is a 3-element array of 4-elemet arrays
of 5-element arrays

char x[3][4][5];

I

Yapisal Programlama Dersi Notlari

24

Initialization of Multi-Dimensional Arrays

intexap[5][3]1={{ 1,2,3}, int exap[5][3]1={ 1, 2, 3,
{4}, 4,
{5,6,7}}; 56,7}

o O U b~
o O oo O N
O O N O Ww
O O N & -
o O O un N
o O O o w

I

Element Address

Array of Pointers ANSERC

ar_of_p[0] 0x1000

ar_of_p[1] 0x1004 2001
ar_of_p[2] 0x1008 Ll
char *ar_of_p[5]; ar_of_p[3] 0x100C undefined
char cO=‘a’; ar_of p[4] 0x1010 undefined
charcl=b’;)
ar_of_p[0] = &cO; Element Address
ar_of_p[1] = &c1; OX1FFF
« examine codes\ArrayOfPointers.c c0 0x2000

» codes\StringMatrixOps.c will also

cl 0x2001
be a good example

0x2002

I

Yapisal Programlama Dersi Notlari

Pointers to Pointers

intr=5; declares r to be an int
int *q = &r; declares g to be a pointer to an int
int **p=&q; declares p to be a pointer to a pointer to an int

r=10; Direct assighment
*q=10; Assignment with one indirection
**p =10; Assignment with two indirections

* Complete examples is left after learning dynamic memory
management as they will make more sense.

—

Bu yansi ders notlarinin dizeni icin bog birakilmistir.

—

Yapisal Programlama Dersi Notlari

26

Dynamic Memory Allocation

Structural Programming
by Z. Cihan TAYSI
Additions by Yunus E. SELCUK

Outline

* Memory allocation functions
* Array allocation

* Matrix allocation

* Examples

I

Yapisal Programlama Dersi Notlari

27

Memory Allocation Functions (in stdlib.h)

* void* malloc(total_size_in_bytes)
* Allocates a specified number of bytes in memory. Returns a pointer to the beginning
of the allocated block.
* void* calloc(number_of_elements, element_size)
* Similar to malloc(), but initializes the allocated bytes to zero.
« calloc has 2 parameters while malloc has one but the resulting allocated free space
will be the same (total size = n * element size).
* void* realloc(void *prev_ptr, total_size_in_bytes)
* Changes the size of a previously allocated block prev_ptr.

* The function may move the memory block to a new location (whose address is
returned by the function).

* When extending the size of a dynamically extended block, never assume that the
additional are will be cleared.

* However, contents of previously allocated memory will remain intact
* The return type of these functions is void:
* So that the returned memory can be used for storing any type of data

* And therefore the returned reference should be casted to the desired regular data
type.

—

Memory Deallocation Function

* void free(void *ptr)
* Frees up memory that was previously allocated with malloc(), calloc(), or
realloc().
* to avoid memory leaks, the general rule is this: for each malloc() or
calloc(), there must be exactly one corresponding free().

_

Yapisal Programlama Dersi Notlari

Array Allocation

intn;

int *list;

printf(“How many numbers are you going to enter ?”);

scanf(“%d”, &n);

list = (int *) malloc(n * sizeof(int)); //OR: (int *) calloc(n, sizeof(int));

if(list==NULL) {
printf(“%s:%d>Can not allocate memory for the array..\n”,__FILE_ , _LINE_);
return -1;

}

//use the memory and then

free(list);

Matrix Allocation

int **mat, i;
int n,m;
printf(“Please enter number of rows”);scanf(“%d”, &n);
printf(“Please enter number of columns”);scanf(“%d”, &m);
mat = (int **) malloc(n * sizeof(int *));
if(mat == NULL) {
printf(“%s:%d>Can not allocate memory for the array...\n”,__FILE__, _ LINE_);
return -1;
}
for(i=0;i<n;i++) {
mat([i] = (int *)malloc(m * sizeof(int));
}

//will be continued in the next slide

Yapisal Programlama Dersi Notlari

29

Matrix Allocation (cont’d)

//use the memory and then

for(i=0;i<n;i++) {
free(mat[i]);

}

free(mat);

* Notice how we have called the free functions to be matched up with
corresponding malloc operations in order to prevent memory leaks.

—

Example 1, 2

* Write a simple program: Sorting (DynamicSorting.c)
* ask number of elements in the array
* allocate necessary space
* ask for elements
* sort the array

* Write a program: Matrix Multiplication (To do: Left as an exercise to
code at home)
1. ask dimensions of the matrices
check if it is possible to multiple them !
allocate necessary space
ask for elements
perform multiplication
write the result matrix

_

WGEL Doy

Yapisal Programlama Dersi Notlari

Example 3

* String matrix operations (bkz. StringMatrixOps.c)

I

Bu yansi ders notlarinin dizeni icin bog birakilmistir.

ET—

Yapisal Programlama Dersi Notlari

31

Functions

Structural Programming
by Z. Cihan TAYSI
Additions by Yunus Emre SELCUK

Outline

* Passing arguments
* pass by reference, pass by value

* Declarations and calls
« definition, allusion, function call

* The main function

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

32

Passing Arguments

* Because C passes arguments by value, a function can assign values
to the formal arguments without affecting the actual arguments

* If you do want a function to change the value of an object, you must
pass a pointer to the object and then make an assignment through
the dereferenced pointer.

* remember the scanf function
* also remember how we have coded the indexOf function

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Passing Arguments: Demonstration

#include <stdio.h>
void increaseRegular(int aa, int bb) {
aa += bb;
printf("increaseRegular finishes with %d\n", aa);

¥
void increasePointer(int *aa, int bb) {

*aa += bb;

printf("increasePointer finishes with %d\n", *aa);
}

int main() {
int a=3, b=5;
increaseRegular(a, b);
printf("main says the value is %d\n", a);
increasePointer(&a, b);
printf("main says the value is %d\n", a);
system("PAUSE"); return(@);

}

* Please run the code and check the output.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

33

Declarations and Calls

* Definition
* Actually defines what the function does, as well as number and type of
arguments
* Function Call

* Invokes a function, causing program execution to jump to the next invoked
function. When the function returns, execution resumes at the point just
after the call

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Function Allusion Examples

* Function Allusion
* Declares a function that is defined somewhere else

* We will study how to create a project that contains multiple source files later. This
topic will be demonstrated then.

void simpleFunction1(void); // prototype of last example
simpleFunctioni();

extern float simpleFunction2();

int factorial(int);

void sortArray(int *, int);

float *mergeSort(float *, int, float *, int, int *);

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

34

Function Definition

.Avery Simple example void simpleFunctionl (void) {
* no arguments printf(“\nThis is simpleFunctioni\n”);
* no return }
* Arelatively complex int factorial(int n) {
example int i,f=1;
¢ afunctionto for(i=2;i<=n;i++)
calculate factorial n AFATIo
* PS: Beware of the W
value range of int %

Yildiz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Function Call

function name > o T :o

argument

printf(“%d : %d : %s : %d\n”, i, j, line, rc);
matT = transpose(mat, rows, cols);

printf(“Hello World\n”’);
printf(“Result is %d\n”, factorial(19));
scanf(“%s”, str);

x = factorial(n) / factorial(m);

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

Order of Functions

* In order to use a function you must define it beforehand.
* In order to use your own function in the main() function, you should define it

before the main() in the same file

* |t is also possible to use function allusion (function prototype)

* You can write the prototype of your function before the main() function and
use it anywhere (main() or any other function of yours)

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Example

* Write a simple function that controls if the given char variable is
alphabetic ?
* Must check
*a—z
s A-Z
* Returns
e 1, if it is a alphabetic
e 0, if not

* To do: Left as an exercise to code at home

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

36

Example

* Write a function to swap values of two integer parameters.

* function takes two integers (a, b)
* When function returns, we must have the value of a in b, and value
of bin a.
* Remember
e tmp =a;
*a=b;
* b=tmp;

* To do: Left as an exercise to code at home

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Passing Arrays as Function Parameter

* Several ways to do it...

* Do NOT forget
* No boundary checking !
* remember your motivation to create a function

* Using actual array size

* void printArray(int ar[5])

* Not very convenient, what if you need to print arrays of multiple sizes?
* Using array and a size parameter

* void printArray(int ar[], int size)

* This is more convenient than the previous method.
* Using a pointer and an integer

* void myFunction(int *ar, int size)

* This is also convenient.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

37

Passing Arrays as Function Parameter

* A hint for obtaining the size of any type of array:
 Define a macro to obtain the size of any type of array such as the one below.

* However, this does not eliminates the necessity of passing array size
as an extra parameter to a function.
* An array sent as a parameter to a function is treated as a pointer, so sizeof
will return the pointer's size, instead of the array's.

* Thus, inside functions this macro does not work.

* You will probably ask the user how many elements that s/he will enter or you
should keep a counter if you obtain array elements in a while loop.

#define SIZE_OF_ARRAY(x) (sizeof(x) / sizeof((x)[@]))

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Example

* Create a sort function for one dimensional arrays
* Use any type of sorting algorithm

* To do: Left as an exercise to code at home

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

38

How to Return an Array from a Function

* We don't return an array from functions, rather we return a pointer
holding the base address of the array to be returned.

* We must, make sure that the array exists after the function ends!
* you can NOT return local arrays!

* SOLUTION : dynamic memory allocation

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Example (concatenation)

* Write a function that takes two arrays and returns the concatenation
of them.

int* concatArraysVl(int arrl[], int sizel, int arr2[], int size2) {
int *merged = (int*) malloc((sizel+size2)*sizeof(int));
int i;
for(i=0; i<sizel; i++)
merged[i] = arrl[i];
for(; i<sizel+size2; i++)
merged[i] = arr2[i-sizel];
return merged;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Example (concatenation) (cont’d.)

* Before the function

#include <stdio.h>
#include <stdlib.h>
#tdefine SIZE_OF_ARRAY(x) (sizeof(x) / sizeof((x)[@]))

void printArray(int al[], int size) {
int i;
for(i=0; i<size; i++)
printf("%d\t", ai[i]);
printf("\n");

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Example (concatenation) (cont’d.)

¢ After the function

int main() {
int arri[] = {1,5,7,19}, arr2[] = {2,6,8,11,28};
int *ptrM = concatArraysVi(
arrl, SIZE_OF_ARRAY(arrl), arr2, SIZE_OF_ARRAY(arr2));
printf("Array 1 is:\t");
printArray(arrl, SIZE_OF_ARRAY(arrl));
printf("Array 2 is:\t");
printArray(arr2, SIZE_OF_ARRAY(arr2));
printf("Array 3 is:\t");
printArray(ptrM, SIZE_OF_ARRAY(arrl)+SIZE_OF_ARRAY(arr2));
free(ptrM);
return(0);

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

40

Example (concatenation) (cont’d.)
* Highlights:

int* concatArraysVi(int arril[], int sizel, int arr2[], int size2) {
int *merged = (int*) malloc((sizel+size2)*sizeof(int));

int i;
for(i=0; i<sizel; i++) merged[i] = arrl[i];
for(; i<sizel+size2; i++) merged[i] = arr2[i-sizel];

return merged;

int main() {
int arri[] = {1,5,7,19}, arr2[] = {2,6,8,11,28};
int *ptrM = concatArraysVvi(
arrl, SIZE_OF_ARRAY(arrl), arr2, SIZE_OF_ARRAY(arr2));

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Alternative to Returning an Array from a
Function
* Instead of having the function to allocate memory and return a

pointer to the result, you can have the caller of the function to define
a blank array and pass this to the function for populating

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

41

Example (concatenation)(alternative)

#include <stdio.h>
#include <stdlib.h>
void printArray(int al[], int size) {
int i;
for(i=0; i<size; i++)
printf("%d\t", ail[i]);
printf("\n");
}
void concatArraysV2(int arri[], int sizel, int arr2[],
int size2, int arr3[]) {
int size3 = sizel+size2;
int i;
for(i=0; i<sizel; i++)
arr3[i] = arrl[i];
for(; i<sizel+size2; i++)
arr3[i] = arr2[i-sizel];

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Example (concatenation)(alternative)(cont’d.)

int main() {
int arri[] = {1,5,7,19}, arr2[] = {2,6,8,11,28};
int sizel = sizeof(arrl)/sizeof(arri[@]);
int size2 = sizeof(arr2)/sizeof(arr2[0]);
int size3 = sizel+size2;
int arr3[size3];
concatArraysV2(arrl, sizel, arr2, size2, arr3);
printf("Array 1 is:\t"); printArray(arril,sizel);
printf("Array 2 is:\t"); printArray(arr2,size2);
printf("Array 3 is:\t"); printArray(arr3,size3);
return(0);

}

* By the way, | have removed the macro definiton SIZE_OF_ARRAY.
You decide whether it is worthy or not.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

42

Example

* Write a function that takes two ordered array and returns the
ordered union of them.

* To do: Left as an exercise to code at home

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

More on the Main Function

* It is possible to pass arguments to the main function so that the
program begins with initial prior data.

* The compiler treats the main() function like any other function,
except that at runtime the host environment is responsible for
providing two arguments

e argc — number of arguments that are presented at the
command line

e argv — an array of pointers to the command line arguments

int main(int argc, char *argv[]) {
while(--argc > 0)
printf(“%s\n”, *++argv);
exit(9);

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd @

Yapisal Programlama Dersi Notlari

43

More on the Main Function

* getopt: A better way to handle command line arguments

* getopt(int argc, char *const argv[], const char *optstring)
* Simply delegate the argc and argv parameters of the main function to the
getopt function.
* optstring is simply a list of characters, each representing a single character
option.
* : (full column) has special meaning that this option requires an additional
argument.
» “abc:d" accepts the options a, b, ¢, and d; c requires an additional and mandatory
argument.
* GNU Cintroduces double :: where the argument is optional, not mandatory.

* The variable optind is the index of the next element to be processed in argv.
The system initializes this value to 1. If there are no more option characters,
getopt() returns -1.

Fore more details and an example, please refer to: http://www.gnu.org/software/libc/manual/html_node/Example -of-
Getopt.html

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

More on the Main Function

A better wav to I wanted to pgt.some cgde her‘e but getopt is
handl v dli used most efficiently in Linux. As a result,
andie command lin€ |+the exams will not cover this topic.

arguments
* getopt
* Argp
* Optopt
* suboptions

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

44

Function Pointers

Structural Programming
by Zeyneb YAVUZ
Corrections and additions
by Yunus Emre SELCUK

Function Pointers

* We can use some functions as arguments to other functions
through the function pointers

* This possibility opens new doors in terms of flexibility for
coding.

* Definition:
* int (*pf) (); // pf is a pointer to a function returning an int.

* int *pf(); // this is a function allusion returning an int pointer

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

* The () around *pf are necessary for correct grouping. Because:

Yapisal Programlama Dersi Notlari

45

extern int f1();

int main() {
int (*pf) (s
pf=F1;
pf=f1();
pf=&f1();

pf=&f1;

//
//
//
/*

/*

Function Pointers

* Assignments to function pointers:

pf is a pointer to a function returning an int.
assign the address of f1 to pf
ILLEGAL, f1 returns an int, but pf is a pointer
ILLEGAL, cannot take the address of a function
result */
ILLEGAL but compiler dependent:
&f1 is a pointer to a pointer, but pf
is a pointer to an int */

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

* Return types:

int main() {

pif = if1; //
pif = cf1l; //
pff = if2; //
pcf = cfl; //
ifl = if2; //

Function Pointers

extern int if1(), if2(), (*pif)();
extern float ff1(), (*pff)();
extern char cf1(), (*pcf)();

Legal: Types match

ILLEGAL: Type mismatch
ILLEGAL: Type mismatch

Legal: Types match

ILLEGAL: Assign to a constant

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

46

Function Pointers

* Example function call via a function pointer:
#include <stdio.h>

extern int f1(int); //could be defined externally but we have coded it below
int main() {

int n;

int (*pf) ();

int answer;

printf("Bir sayi giriniz: "); scanf("%d",&n);

pf=f1;
answer=(*pf)(n); // calls f1() with argument a => f1(a)

printf("%d", answer);
return 0;

}

int f1(int a) {
return a+l;

}

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Bu yansi ders notlarinin dizeni icin bog birakilmistir.

—

Yapisal Programlama Dersi Notlari

47

Recursion

Structural Programming
by Zeyneb YAVUZ
Corrections and additions
by Yunus Emre SELCUK

Recursion

* A recursive function is one that calls itself.
* An example is given on the right side
* It is important to notice that this function will
call itself forever.

* Actually not forever, but till the computer
runs out of stack memory

* It means a runtime error

* Thus, remember to include a stop point in your
recursive functions.

void recurse () {
static count =1;
printf(“%d\n”, count);

count++;
recurse();
}
main() {
recurse();
}

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

48

Recursion Top

fancl()
* When a program begir\s op baTameters Top
executing in the function ()) ()

main(), space is allocated on the
stack for all variables declared
within main(), Figure 14.13(a) (@) (b) ©
Figure 14.13: Organization of the Stack
* If main() calls a function, funcl(), additional storage is allocated for the variables
in funcl() at the top of the stack Figure 14.13(b)

* Notice that the parameters passed by main() to funcl() are also stored on the
stack.

* When funcl() returns, storage for its local variables is deallocated, and the top of
the stack returns to the 1%t position Figure 14.13(c)

* As can be seen, the memory allocated in the stack area is used and reused
during program execution.

* It should be clear that memory allocated in this area will contain garbage
values left over from previous usage.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Recursion Example: Factorial Calculation

fact(5
int fact(intn) {)
|f(n g 1) Step 1 - call fact(5) Step 10 - return 120 (5 * 24)
return 1; 5 * fact(4)
else Step 2 - call fact(4) l) Step 9 - return 24 (4 * 6)
return n*fact(n-1);
4 * fact(3)
main() { Step 3 - call fact(3) Step 8 - return 6 (3* 2)
printf("5! is %d\n", fact(5)); 3 * fact(2)
} Step 4 - call fact(2) 1) Step 7 - return 2 (2*1)
2 * fact(1)

Step 5 - call fact(1) Step 6 - return 4

1
* A few other examples to solve with recursion (left as exercises at home):
* Fibonacci numbers—F, ., =F, +F,,
* Binary search
* Depth-first search

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

49

Structures and Unions

Structural Programming
by Z. Cihan TAYSI
Additions by Yunus Emre SELCUK, Zeyneb YAVUZ

Outline

* Structure definition

* Nested structures

e Structure arrays

* Passing structures as function parameters
* An example: Linked list implementation

* Union definition

* Passing unions as function parameters

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

50

Structure Definition —|

* Arrays are useful for dealing with identically typed variables but
managing groups of differently typed data needs a better way.

* For example, to keep the record of an employee, we need to store
his/her name as string, surname as string, ID as integer and salary as
float.

* If we insist on using arrays, we need to use multiple 1-D arrays
* Moreover, assume that we need to track 1000 employees

char names[1000][20], surnames[1000][20];
int 1IDs[1000]; float salaries[1000];

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Structure Definition —II

* A more natural organization would be to create a single variable that
contains all four pieces of data for one employee. C enables you to do
this with a data type called a structure.

* Defining a structure type that can keep the information of an
employee:

struct Employee {
char name[20], surname [20];
int 1ID;
float salary;

}s

* Creating an array of employees:

struct Employee employees[1000];

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

51

Structure Definition — I

* A more convenient way to define and use a structure:

typedef struct {
char name[20], surname [20];
int 1ID;
float salary;

} EMPLOYEE ;

* In that case, EMPLOYEE represents the entire structure definition,
including the struct keyword.

* Using capital case is a naming convention to keep such structs
from regular variable names.

* Then the array definition becomes:

EMPLOYEE employees[1000];

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Accessing to the Fields of a Structure

* You can access the fields of structure variable by the dot sign.

EMPLOYEE yunus;
yunus.ID = 1234;

* You can access the fields of structure pointer by the arrow sign.

EMPLOYEE *e_ptr;
e ptr->ID = 1234;

* The arrow notation is a tidier way of writing:
(*e_ptr).ID = 1234;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

52

Nested Structures

* You can define a structure within another, creating data hierarchies.
* They can also be used separately, therefore define separately and

nest them as needed.
* Adding the enlisting date of an employee:

FYPedEs) > ERTGt 1 * Later, you can write:
short day, month;
int year; yunus.enlisted.year = 2008;
} DATE ;

typedef struct {
char name[20], surname [20];
int 1ID;
float salary;
DATE enlisted;
} EMPLOYEE ;

Bilgisayar Mahendisligi Bélima

Yildiz TekRnik Universitesi -

Passing structures as function parameters

* There are two ways to pass structures as arguments:
* pass the structure itself (called pass by value)
EMPLOYEE emp;

printReport(emp);
* pass a pointer to the structure (called pass by reference)

EMPLOYEE emp;
increaseSalary(&emp);
* Passing by reference is faster and more efficient
* Depending on your choice, declare the argument of the
function as either a structure or a pointer to a structure
* Then use . or -> in the body of the function.

* The pointer points to an entire structure, not to its first field.

Bilgisayar Mihendisliji Bolimd

Vild1z Teknik Oniversitesi -

Yapisal Programlama Dersi Notlari

53

Structure example: Linked List Implementation

* Array structure is not efficient enough because:
* They cannot be resized automatically

* You need to allocate memory for worst-case, which is a waste of
memory

* Insertions are hard
* You need to shift elements
* A more efficient data structure is a Linked list:
* A linked list is a chain of structures that are linked one to another,
like sausages.
* In the simplest linked-list scheme, each structure contains an
extra member which is a pointer to the next structure in the list.
* You will learn about lists and other data structures in the
next term in the namesake course

Oy
Al

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Structure example: Linked List Implementation

* An example linked list holding integers:

49 ® 15 ° 73
/
Head
node > 87) 10
/

An element / \ NULL pointer
and pointer (points to nothing)

(end of list)

A by
& b

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

54

Structure example: Linked List Implementation

* We will use the Employee struct as the data element AND the

node.

* Advantage: This will keep things a little bit simpler.

¢ Definition:

#include <stdio.h>
typedef struct Employee {

char name[20], surname [20];

int 1ID;

float salary;

struct Employee *next;
} EMPLOYEE;
EMPLOYEE *head;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Structure example: Linked List Implementation

* We can also define our node
structure as follows

* Advantage: This will keep
the struct related with the
problem domain separate
from the struct related with
data representation.

¢ Left to students as an
exercise

#include <stdio.h>
typedef struct {
char name[20], surname [20];
int 1ID;
float salary;
} EMPLOYEE;
typedef struct emp_node {
EMPLOYEE data;
struct emp_node *next;
} EMP_NODE;
EMP_NODE *head;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

55

Structure example: Linked List Implementation

* Printing the information of an employee and the entire list:

void printElementP(EMPLOYEE *emp) {
printf("Employee %d %s has a salary of %f\n",
emp->ID, emp->name, emp->salary);
}
void printList() {
int j; EMPLOYEE *p;
for(j=0, p=head; p != NULL; p=p->next, j++)
printf("%d-th person: %d\t%s\t%f\n",
j+1, p->ID, p->name, p->salary);

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Structure example: Linked List Implementation

* We will need functions to allocate memory for an employee,
creating an employese, ...

EMPLOYEE* create_list element() {

EMPLOYEE *emp; int i; float s;
emp = (EMPLOYEE*) malloc(sizeof(EMPLOYEE));
if(emp == NULL) {
printf("create_employee: out of memory."); exit(1);
}
printf("Enter name of the person: "); scanf("%s", emp->name);
//can’t get non-pointer struct fields directly in some platforms
printf("Enter ID of the person: ");
scanf("%d", &i); emp->ID = i;
printf("Enter salary of the person: ");
scanf("%f", &s); emp->salary = s;
emp->next=NULL; return emp;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

56

Structure example: Linked List Implementation

* ... and adding her/him to the list.
/* The create_list_element() function allocates memory,

but it doesn't link the element to the list.
For this, we need an additional function, add_element(): */

e ... code will continue in the next slide

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Structure example: Linked List Implementation

void add_element(EMPLOYEE *e){
EMPLOYEE *p;
// if the 1st element (head) has not been created, create it now:
if(head == NULL){ head=e; return; }
// otherwise, find the last element in the list:

//Span through each element testing to see whether p.next is NULL.
//If not NULL, p.next must point to another element.

//If NULL, we have found the end of the list and we end the loop.
for (p=head; p->next != NULL; p=p->next); // null statement

// append a new structure to the end of the list
p->next=e;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Structure example: Linked List Implementation

* We may need to fire an employee (deleting a node):

/* To delete an element in a linked list,
you need to find the element before the one you are deleting
so that you can bond the list back together after removing one of the links.
You also need to use the free() func,
to free up the memory used by the deleted element. */
void delete_element(EMPLOYEE *goner){
EMPLOYEE *p;
if(goner == head) { head=goner->next; }
else { // find element preceding the one to be deleted:
for(p=head; (p!=NULL) && (p->next != goner); p=p->next);
if(p == NULL){
printf("delete_element(): could not find the element \n"); return;

}
p->next=p->next->next;
}
free(goner);

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Structure example: Linked List Implementation

* We may need to search an employee:

/* Finding an Element in the Linked List:
There is no easy way to create a general-purpose find() function
because you usually search for an element based on one of its data fields
(e.g. person's name), which depends on the structure being used.
To write a general-purpose find() function, you can use function pointers
(will be studied later).
The following function, based on the personalstat structure,
searches for an element, whose name field matches with the given argument.*/
EMPLOYEE* find(char *name) {
EMPLOYEE *p;
for(p=head; p!= NULL; p=p->next)
if(strcmp(p->name, name) == @) // returns @, if 2 strings are same
return p;
return NULL;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

58

Structure example: Linked List Implementation

* We may need to put a new employee between two existing
people (inserting a node in between) :

/* To insert an element in a linked list, you must specify
where you want the new element inserted.
The following function accepts 2 pointer arguments, p and q,
and inserts the structure pointed by p,
just after the structure pointed by q. */
void insert_after(EMPLOYEE *p, EMPLOYEE *q){
// if p and g are same or NULL, or if p already follows g, report that:
if(p==NULL || g==NULL || p==q || g->next == p){
printf("insert_after(): Bad arguments \n");

return;
}
p->next = g->next;
q->next = p;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Structure example: Linked List Implementation

* Let’s put them all together and make a demonstration:

int main(){
EMPLOYEE *p,*q;
int val, j;
for(j=0; j<2; j++)
add_element(create_list element());
for(j=0, p=head; p != NULL; p=p->next, j++)
//for(p=head; p != NULL; p=p->next)
£

}

printf("%d-th person: ",(j+1)); printElementP(p);

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

Structure example: Linked List Implementation

* Demonstration cont’d:

// CREATE A NEW ELEMENT AND INSERT IT IN
// BETWEEN THE 1st AND 2nd ELEMENTS IN THE LIST:
p=create_list_element();

g=head; //to keep the first element, head
insert_after(p, q); //and we insert p, after q:

printList();

return 0;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Structure Alignment

* Some computers require that any data object larger than a char must be
assigned an address that is a multiple of a power of 2 (all objects larger
than a char are to be stored at even addresses).

* Normally, these alignment restrictions are invisible to the programmer.
However, they can create holes, or gaps, in structures.

* Consider how a compiler would allocate memory for the following
structure:
structure ALIGN_EXAMP{
char mem1;
short memz2;
char mem3;
}s1;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

60

Structure Alignment

* structure ALIGN_EXAMP{ char mem1; short mem2; char mem3; } s1;

If the computer has no alignment restrictions, s1 would be stored as:
1001 1003

1000 mem1 mem2 mem3

1004

If the computer requires objects larger than a char to be stored at even

addresses, s1 would be stored as:
1001 1002

1000 mem] hole mem2

mem3 hole

1004

*This storage arrangement results in a I-byte hole between mem1 and
mem2 and following mem3.
Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Bit fields

* The smallest data type that C supports is char(8 bits)

* But in structures, it is possible to declare a smaller object called a bitfield.

* Bit fields behave like other int variables, except that:
* You cannot take the address of a bit field and
* You cannot declare an array of bit fields.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

61

Bit fields

* Syntax:

base g
— =] i

bit field
name

The base type may be int, unsigned int, or signed int.

If the bit field is declared as int, the implementation is free to decide
whether it is an unsigned int or a signed int (For portable code, use the
signed or unsigned qualifier).

The bit length is an integer constant expression that may not exceed the
length of an int.

On machines where ints are 16 bits long, e.g. the following is illegal:

int too_long: 17;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Bit fields

* Assuming your compiler allocates 16-bits for a bit field, the
following declarations would cause g, b, and c to be packed
into a single 16-bit object:

TtIUCt Address 12345678910 11 12 13 14 15
int a : 3; 1000 a b c
int b : 7; 1002
int ¢ : 2;

} s;

PS: Each implementation is free to arrange the bit fields within the object
in either increasing or decreasing order, depending on the compiler

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

62

Bit fields

struct

{
int a : 10; 1000
int b : 10; 1002

} s;

* If a bit field would located in an int boundary, a new memory
area may be allocated, depending on your compiler. For
instance, the declaration might cause a new 16-bit area of
memory to be allocated for b:

Address 1 2345678910 11 12 13 14 15

a gap

b gap

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Bit fields

* Consider DATE structure example:

Address | 5 9 15 20 23 28 31
struct DATE{ 1000 day | month| year -[] day | m
UnS!gned Int day : 5' 1004 omhl year l dnyl month| vye
unsigned int month : 4; '
S . 1008 ar l]:lay\| mon(h[year
unsigned int year : 11;
}r Figure 8-8. Storage of the DATE Structure with Bit Fields. This
figure assumes that the compiler packs bit fields to the
nearest char and allows fields to span int boundaries.
Address | 5 9 15 31 :
. " 777, Alternative Storage of the DATE
1000 sl Bl 77777 (B Structure with Bit Fields. The left
1004 day | monnl/ /] your figure assumes that the compiler
o5 packs bit fields to the nearest
1008 day | month’~~~~7} year short and does not allow fields

to span int boundaries.

* It can be seen that, in order to ensure optimum memory allocation, you need to know
some details of your environment but you can always take some precautions by: changing

the order of your fields, allocating a few extra bits in order to save more memory, etc.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

63

Example: A Struct having a bit field
* Let’s keep employment dates of employees:

struct personalstat {
char ps_name[20], ps_tcno[11];
unsigned int ps_birth_day : 5;
unsigned int ps_birth_month : 4;
unsigned int ps_birth_year : 11;
// pointer to the next element in the linked list:
struct personalstat *next;
¥
// ELEMENT becomes synonymous with struct personalstat:
typedef struct personalstat ELEMENT;

// Always keep a pointer to the beginning of the linked list
static ELEMENT *head;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Example: A Struct having a bit field

* The rest will be very similar to our previous example:

void printElementP(ELEMENT *emp) {
printf("Employee %s %s born in %d.%d.%d\n", emp->ps_tcno, emp->ps_name,
emp->ps_birth_day, emp->ps_birth_month, emp->ps_birth_year);

}
void printList() {
int j; ELEMENT *p;
for(j=0, p=head; p != NULL; p=p->next, j++)
printf("%d-th person: %s\t%s\t%u.%u.%u\n", j+1, p->ps_name, p->ps_tcno,
p->ps_birth_day, p->ps_birth_month, p->ps_birth_year);

}
ELEMENT *create_list_element(){
ELEMENT *p;
int val; //ilkel ve bitfield oldugu i¢in gegici degisken sart
p=(ELEMENT*) malloc (sizeof (ELEMENT));
if(p == NULL) { printf("create_list_element (): malloc failed. \n"); exit(1l); }
printf("Enter name of the person:"); scanf("%s", p->ps_name);
printf("Enter tcno of the person:"); scanf("%s", p->ps_tcno);
printf("Enter the birth-date (day) of the person:"); scanf("%u", &val); p->ps_birth_day=val;
printf("Enter the birth-date (month) of the person:"); scanf("%u", &val); p->ps_birth_month=val;
printf("Enter the birth-date (year) of the person:"); scanf("%u", &val); p->ps_birth_year=val;
p->next=NULL; return p;

void add_element(ELEMENT *e){
ELEMENT *p;
if(head==NULL){ head=e; return; }
for (p=head; p->next != NULL; p=p->next); // null statement
p->next=e;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

64

Example: A Struct having a bit field

* The rest will be very similar to our previous example :

void insert_after(ELEMENT *p, ELEMENT *q){
// if p and q are same or NULL, or if p already follows q, report that:
if(p==NULL || g==NULL || p==q || g->next == p){
printf("insert_after(): Bad arguments \n");
return;

p->next
qg->next

= g->next;
=PpPs
}
void delete_element(ELEMENT *goner){

ELEMENT *p;

if(goner == head)

head=goner->next;

else // find element preceding the one to be deleted:

for(p=head; (p!=NULL) && (p->next != goner); p=p->next); // null statement

if(p == NULL){
printf("delete_element(): could not find the element \n"); return;
}
p->next=p->next->next;
free(goner);

}
ELEMENT *find(char * name){
ELEMENT *p;
for(p=head; p!= NULL; p=p->next)
if(strcmp(p->ps_name, name) == @) // returns @, if 2 strings are same
return p;
return NULL;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Example: A Struct having a bit field

* The rest will be very similar to our previous example :

int main(){
ELEMENT *p, *q;
int val, j;
for(j=0; j<2; j++)
add_element(create_list_element());

for(j=0, p=head; p != NULL; p=p->next, j++) //for(p=head; p != NULL; p=p->next)

{
//printf("%d-th person: %s\t%s\t%u.%u.%u\n", j+1, p->ps_name, p->ps_tcno, p->ps_birth_day, p->ps_birth_month, p->ps_birth_year);
printf("%d-th person: ", (j+1)); printElementP(p);

// CREATE A NEW ELEMENT AND INSERT IT IN BETWEEN THE 1st AND 2nd ELEMENTS IN THE LIST:

p=create_list_element();

g=head; // to keep the first element, head and we'll insert p, after q:
insert_after(p,);

printList();

return 0;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

65

Unions

* Unions are similar to structures except that the members are
overlaid one on top of another, so members share the same
memory.

* There are two basic applications for unions:

* Interpreting the same memory in different ways.
* Creating flexible structures that can hold different types of
data.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Unions
* Example:
typedef union 1000 1001 1002 1003

struct ci c2
{

char cl, c2 i

} osi
long j; X
float x;

boU;

U example;

* Usage: 1000 1001 1002 1003
example.s.cl = 'a’; ' b
example.s.c2 = 'b’;

+ If you make the assignment:
example.j = 5; //overwrites the 2 chars, using all 4 bytes to store value 5.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

66

Real life example for Unions in Structures

* Consider our PERSONALSTAT example (name, tcno, birth_date),
we want to add additional information as follows:
* Are you T.C. citizen?
* If you are a T.C. citizen, in which city were you born?
* If not a T.C. citizen, what is your nationality?

typedef struct { typedef struct {
unsigned int day : 5; char ps_name[20], ps_tcno[11];
unsigned int month : 3; DATE ps_birth_date;
unsigned int year : 11; /I Bit field for TC citizenship:
} DATE; unsigned int TCcitizen : 1;
char nationality[20];
* This definition wastes memory char city_of_birth[20];

in each record for either

. . A . } PERSONALSTAT;
nationality or city_of birth.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Real life example for Unions in Structures

¢ Let’s construct a better struct with a union so that we eliminate
unnecessary waste of memory:

typedef struct { typedef struct {
unsigned int day : 5; char ps_name[20], ps_tcno[11];
unsigned int month : 4; DATE ps_birth_date;
unsigned int year : 11; unsigned int TCcitizen : 1;

} DATE; union{

char nationality[20];
char city_of_birth[20];
} location;
} PERSONALSTAT;

* Example code is in union.c

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

67

File Input-Output (1/0)

Structural Programming
by Zeyneb YAVUZ
Corrections and additions
by Yunus Emre SELCUK

Input and Output (I/0)

* Operating systems (OSs) vary greatly in the way they allow access to data
in files and devices.

* This variation makes it extremely difficult to design I/O programs that are
portable.

* The C language performs I/O through a large set of runtime routines.
Some of these functions were derived from the UNIX I/O library.

* However:
* The "C library" deals mostly with buffered 1/O while the UNIX library performs
unbuffered 1/0.
* The UNIX OS treats binary and text files the same. In some other OSs, the
distinction is extremely important.

* ANSI Committee preserved, deleted, and modified some functions:

* The bi%gest change is: elimination of unbuffered I/O functions. In the
ANSI library, all I/O functions are buffered, still you can change the

buffer size.
* The ANSI I/O functions make a distinction between accessing files in
binary or text mode (to be examined in more detail shortly).

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd @

Yapisal Programlama Dersi Notlari

68

I/O and Streams ¢ PROGRAM FiLe

STREAM

* C makes no distinction between devices such >
as a terminal or tape drive or files on a disk. Q 2

* Inall cases, I/0 is performed through streams
that are associated with the files or devices.

* A stream consists of an ordered series of bytes (such as a one-
dimensional array of characters, as shown in the Figure).

* Reading and writing to a file or device involves reading data from the
stream or writing data onto the stream.

* To perform I/O operations, you must associate a stream with a file or a
device.

* You do this by declaring a pointer to a structure type called FILE.
* The FILE structure, will be examined later in more detail.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi @

Standard Streams

* There are three default streams that are automatically opened for
every program:

* stdin, stdout and stderr.

* Usually, these streams point to your terminal, but many operating
systems permit you to redirect them (eg you might want error
messages written to a file instead of the terminal).

* The I/0O functions already introduced, eg printf() and scanf(), use
these default streams.

* printf() writes to stdout, and scanf() reads from stdin.

* You could use these functions to perform 1/0 to files by making
stdin and stdout point to files (with the freopen() function).

* However an easier method is to use the equivalent functions,
fprintf() and fscanf(), which enable us to specify a particula

i;: ream.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

69

Text and Binary Formats

* Data can be accessed in one of two formats: text or binary.

* A text stream consists of a series of lines, where each line is
terminated by a newline (‘\n’) character.

* However, OSs may have other ways of storing lines on disks, so each
line in a text file does not necessarily end with a newline character.

* E.g. many IBM systems, keep track of text lines through an index of
pointers to the beginning of each line.

* In this scheme, the files stored on disk or tape may not contain
newline characters even though they are logically composed of
lines.

* However, when these lines are read into memory in text mode, the
runtime functions automatically insert newlines into the text
stream.

L O,
o 0

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Text Format

* When lines are written from/to a text stream, the 1/0O functions may
replace new lines in the stream with implementation-defined
characters that get written to the I/O device.

* In this way, C text streams have a consistent appearance from one
environment to another, even though the format of the data on the
storage devices may vary.

* Despite this rule that promotes portability somewhat, be extremely
careful when performing textual I/O: Programs that work on one
system may not work exactly the same way on another.

* In particular, the rules described above hold true only for printable
characters (e.g. tabs, form feeds, and newlines).

* If control characters (non-printable characters) appear in a text
stream, they are interpreted in an implementation-defined manner.

A G
& Ve

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

70

Binary Format

* In binary format, the compiler performs no interpretation of bytes.
It simply reads and writes bits exactly as they appear.

* Binary streams are used primarily for non-textual data, where there
is no line structure and it is important to preserve the exact
contents of the file.

* If you are more interested in preserving the line structure of a file,
you should use a text stream.

* The 3 standard streams (stdin, stdout, stderr) are all opened in text
mode.

* In UNIX environments the distinction between text and binary
modes is superficial since UNIX treats all data as binary data.

* However, even when programming in a UNIX environment, you
should beware of potential difficulties in porting to other systems

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi @

Using Streams via the FILE Structure

* To perform I/O operations, you must associate a stream with a file
or a device.

* You do this by declaring a pointer to a structure type called FILE.

* The FILE structure, which is defined in the stdio.h header file,
contains several fields to hold such information as the file's name,
its access mode, and a pointer to the next character in the stream.

* These fields are assigned values when you open the stream and
access it, but they are implementation dependent, so they vary
from one system to another.

* The FILE structures provide the OS some metadata information, but
our only chance to access to the stream is the pointer to the FILE
structure (called a file pointer).

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd @

Yapisal Programlama Dersi Notlari

71

Using Streams via the FILE Structure

* The file pointer, which you must declare in your program, holds the
stream identifier returned by the fopen() function.

* You use the file pointer to read from, write to, or close the stream.

* A program may have more than one stream open simultaneously,
although each implementation imposes a limit on the number of
concurrent streams.

* One of the fields in each FILE structure is a file position indicator
that points to the byte where the next character will be read from
or written to.

* As you read from or write to the file, the OS adjusts the file position
indicator to point to the next byte.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Using Streams via the FILE Structure

* Although you can't directly access the file position indicator (at
least not in a portable fashion), you can fetch and change its value
through library functions, thus enabling you to access a stream in
non-serial order.

* Do not confuse the file pointer with the file position indicator:
* The file pointer identifies an open stream connected to a file or
device.

* The file position indicator refers to a specific byte position (i.e.
next character) within a stream

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

72

The <stdio.h> Header File

* To use any of the I/O functions, include the stdio.h, which
contains:

* Prototype declarations for all the I/O functions.
* Declaration of the FILE structure.

* Several useful macro constants, including stdin, stdout, stderr,
EOF, and NULL.

* stdin, stdout, stderr: Standard streams

* EOF: The value returned by many functions when the system
reaches the end-of-file marker.

* NULL: The name for a null pointer. It can be defined in another
header file called stddef.h.

* To use NULL, you must either include stdio.h or stddef.h

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Opening a File: fopen function

* Before you can read from or write to a file, you must open it with
the fopen() function.
* fopen() takes 2 arguments:
* 1st parameter is the file name
* 2nd parameter is the access mode
* There are two sets of access modes:
* One for text streams and
* One for binary streams.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

73

e

Opening a File:
fopen function | «-

* Access modes for
text streams is on
the right side. “gn

* The binary modes
are exactly the
same, except that s
they have a “b”
appended to the
mode name. “we?

* For example to
open a binary file ugy®
with read access
you would use "rb".

Open an existing text file for reading. Reading
occurs at the beginning of the file.

Create a new text file for writing. If the file
already exists, it will be truncated to zero
length. The file position indicator is initially
set to the beginning of the file.

Open an existing text file in append mode. You
can write only at the end-of-file position. Even
if you explicitly move the file position indica-
tor, writing still occurs at the end-of-file.

Open an existing text file for reading and writ-
ing. The file position indicator is initially set to
the beginning of the file.

Create a new text file for reading and writing.
If the file already exists, it will be truncated to
zero length.

Open an existing file or create a new one in
append mode. You can read data anywhere in
the file, but you can write data only at the
end-of-file marker.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Opening a File: fopen function

* File and Stream properties of fopen() modes:

File must exist before open *

Old file truncated to zero length * *
Stream can be read * |% | %
Stream can be written * * | *

Stream can be written only at end

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

74

Opening a File: fopen function

* fopen() returns a file pointer of type FILE that you can use to
access the file later in the program (check the example code).

* fopen() returns a null pointer (NULL) if an error occurs.
* If successful, fopen() returns a non-zero file pointer.

* fprintf() is exactly like printf(), except that it takes an extra
argument indicating which stream the output should be sent to.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

|/O Operations: Reading and Writing Data

* Once you have opened a file, you use the file pointer to perform
read and write operations.

* There are three ways to perform I/O operations on three different
sizes of objects:
* One character at a time: getc and putc functions
* One line at a time: fgets and fputs functions
* One block at a time: fread and fwrite functions

* Each of these methods has some pros and cons that will be
discussed later.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

75

|/O Operations: Reading and Writing Data

* One rule that applies to all levels of 1/0 is:
* You cannot read from a stream and then write to it without an
intervening call to fseek(), rewind(), or fflush().
* The same rule holds for switching from write mode to read
mode.

* These three functions are the only I/0 functions that flush the
buffers.

* If you do not have memory shortage, you can read from input the
stream, construct and keep the output data in the memory and
finally write to the output stream

* The input and output streams can point to the same file, but
close the file that you have read before writing to it.

‘\uﬂ"' Ui
8

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Closing a File: fclose function

* To close a file, you need to use the fclose() function: fclose(fp);

* Closing a file frees up the FILE structure that fp points to so, the OS
can use the structure for a different file.

* It also flushes any buffers associated with the stream.

* Most OSs have a limit on the number of streams that can be open
at once, so it's a good idea to close files when you're done with
them.

* In any event, all open streams are automatically closed when the
program terminates normally.

* Most OSs will close open files even when a program aborts
abnormally, but you can't depend on this behavior.

A G
& Ve

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

76

I/O Example #1: Copy operation

* Reading and writing one character at a time in binary mode:

When the end-of-file is encountered, the
Fanclude-~<stdLon i feof() function returns a non-0 value

#define FAIL ©
#define SUCCESS 1
int copyfile(char * infile, char * outfile){
FILE *fpl, *fp2;
if ((fpl1 = fopen(infile, "rb")) == NULL) {
printf("Could not open the input file\n"); return FAIL;
¥
if ((fp2=fopen (outfile, "wb")) == NULL) {
printf("Could not open the output file\n"); fclose(fpl); return FAIL;
¥
L, while (!feof(fpl))
putc(getc(fpl), fp2);
fclose(fpl); fclose(fp2); return SUCCESS;
} //to be continued with the main method

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

|/O Example #1: Copy operation

* More on how to determine EOF:

* we cannot use the return value of getc() to test for an end-of-file
character because the file is opened in the binary mode.

* For example, if we wrote:
int c;
while ((c = getc(fpl)) != EOF)
putc(getc(fpl), fp2);
* the loop will exit whenever the character read has the same value
as EOF.
* This may or may not be a true end-of-file condition in binary files.

* Only the feof() function will exactly provide us to check if we reach
the end-of-file.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

77

I/O Example #1: Copy operation
* The rest of the example:

int main(){
char infl[100], outfl[1e0];
int result;
printf("enter name of the input file\n"); scanf("%s", infl);
printf("enter name of the output file\n"); scanf("%s", outfl);

result=copyfile(infl, outfl);
if(result == SUCCESS)
printf("input file is copied to the output file \n");
if(result == FAIL)
printf("input file could not be copied to the output file \n");
return 0;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Character 1/0O:

* Four functions that read and write one character to a stream:
* getc() A macro that reads one character from a stream.
* fgetc() Same as getc(), but implemented as a function.
* putc() A macro that writes one character to a stream.
* fputc() Same as putc(), but implemented as a function.

* getc() and putc() are usually implemented as macros whereas fgetc() and
fputc() are guaranteed to be functions.

* Because putc and getc are implemented as macros, they usually run
much faster. They are almost twice as fast as fgetc and fputc

* However since they are macros, they are susceptible to side effect
problem e.g. this is a dangerous call that may not work as expected:
putc(’x', fplj++]);

* If an argument contains side effect operators, you should use fgetc() or
fputc(), which are guaranteed to be implemented as functions.

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

78

I/O Example #2: Copy operation

* Reading and writing one line at a time in text mode:
#include <stdio.h>

//#include <stddef.h> The difference is in the while loop and its
#define FAIL © body

t#tdefine SUCCESS 1
#tdefine LINESIZE 100
int copyfile(char * infile, char * outfile){
FILE *fpl, *fp2; char line[LINESIZE];
if ((fpl = fopen(infile, "r")) == NULL) {
printf("Could not open the input file\n"); return FAIL;
}
if ((fp2=fopen (outfile, "w")) == NULL) {
printf(“Could not open the output file\n"); fclose(fpl); return FAIL;
}
while (fgets (line, LINESIZE-1, fpl) != NULL)
fputs(line, fp2);
fclose(fpl); fclose(fp2); return SUCCESS;
} //the main method will be the same as the previous example

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Line 1/O:

* There are two line-oriented //0 functions-fgets() and fputs().
* The prototype for fgets() is: char *fgets(char *s, int n, FILE stream);

* The three arguments of fgets():
* s: A pointer to the 1%t element of an array to which characters will be
written.
* N: An integer representing the max number of characters to read.
* stream The stream from which to read.

* fgets() reads characters until it reaches a newline, or the end-of-file, or the
maximum number of characters specified.

* fgets() automatically inserts a null character after the last character written to
the array.

“w_n

* So, we specify the “n” parameter to be one less than the “s” array #.

* fgets() returns NULL when it reaches the end-of-file.

“_n

* Otherwise, it returns the first argument (“s” string).

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

Line I/O:

* The prototype for fputs() is: fputs(char *s, FILE stream)

* fputs() writes the array identified by the 15t argument to the stream identified
by the 2" argument.

¢ In the code example, copying a binary file with line I/O produced a corrupt file.

fgets() vs gets():

* gets() is the function that reads lines from stdin.

* Both functions append a null character (‘\0’) after the last character written.

* However, gets() does not write the terminating newline character to the input
array. fgets() does include the terminating newline character (or an EOF if it just
got the last line of the file).

* Also, fgets() allows you to specify a maximum number of characters to read,
whereas gets() reads characters indefinitely until it encounters a newline or EOF.

Oy
Al

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Block I/O:

* We can also access data in lumps called blocks, where each block is
stored in an array.

* When you read or write a block, you need to specify the number of
elements in the block and the size of each element.
* The two block 1/0 functions are: fread() and fwrite().
* size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
* void fwrite(void *ptr, size_t size, size_t nmemb, FILE *stream);
* size_t: an integer type defined in stdio.h
* ptr: A pointer to an array (mostly char), in which to store data.
* size The size of each element in the array.
* nmemb The number of elements to read.
* stream The file pointer.

A by
& b

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

80

Block I/0O:

* fread() returns the number of elements actually read, which should
be the same as the 3" argument unless an error occurs or an EOF
condition is encountered.

* The fwrite() is the mirror of fread(), takes the same arguments, but
instead of reading elements from the stream to the array, it writes
elements from the array to the stream.

* The block sizes in fread() and fwrite(), do not affect the number of
device 1/0 operations performed

* The buffer size, for instance, might be 1024 bytes. If the block size specified in a read
operation is only 512 bytes, the OS will still fetch 1024 bytes from the disk and store
them in memory.

* But, only the first 512 bytes will be available to the fread().

* On the next fread() call, the OS will fetch the remaining 512 bytes from memory rather
than performing another disk access.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

|/O Example #2: Copy operation

* Reading and writing by blocks in binary mode:
#include <stdio.h>
#include <stddef.h>
#define FAIL ©
#define SUCCESS 1
#define BLOCKSIZE 512
typedef char DATA;
//continued in the next slide

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

81

I/O Example #2: Copy operation

* Reading and writing by blocks in binary mode:
int copyfile(char * infile, char * outfile){
FILE *fpl, *fp2; int num_read; char block[BLOCKSIZE];
if ((fpl = fopen(infile, "rb")) == NULL){
printf("Error opening file %s for input.\n", infile); return FAIL;
}
if ((fp2 = fopen(outfile, "wb")) == NULL){
printf("Error opening file %s for output.\n", outfile);
fclose(fpl); return FAIL;
}
while ((num_read = fread(block, sizeof(DATA), BLOCKSIZE, fpl)) == BLOCKSIZE)
fwrite(block, sizeof(DATA), num_read, fp2);
fwrite(block, sizeof(DATA), num_read, fp2); //notice this line!
fclose(fpl); fclose(fp2);
if (ferror(fpl)) { printf("Error reading file %s\n", infile); return FAIL; }
return SUCCESS;
} //the main method will be the same as the previous example

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Random Access:

* So far we accessed files sequentially, beginning with the 1st byte and
accessing each successive byte in order.

* For some applications this can be reasonable.

* However, for some applications, you need to access particular bytes
in the middle of the file.

* In this case, we use 2 random access functions: fseek() and ftell().

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

82

Random Access: fseek

* The fseek() moves the file position indicator to a specified
character in a stream:

int fseek(FILE *stream, long int offset, int whence);
* stream: A file pointer
* offset: An offset measured in characters (can be negative).
* Binary: # of bytes.
* Text: Either O, or a value returned by ftell().
* whence: The starting position from which to count the offset.
* 3 choices for whence (defined in stdio.h):
* SEEK_SET: The beginning of the file.
* SEEK_CUR: The current position of the file position indicator
* SEEK_END: The end-of-file position.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Random Access: fseek

* For example: stat = fseek(fp, 10, SEEK_SET);
* Moves the file position indicator to character 10 of the stream. This will be
the next character read or written.
* Streams, like arrays, start at the 0-th position, so character 10 is actually the
11-th character in the stream.
* The value returned by fseek() is O if the request is legal. Otherwise, it
returns a non-0 value.

* This can happen for a variety of reasons, the following is illegal if fp is
opened for read-only access because it attempts to move the file
position indicator beyond the end-of-file position: stat = fseek(fp, 1,
SEEK_END)

* If SEEK_END is used with read-only files, the offset value must be less than or
equal to 0.

* Similarly, if SEEK_SET is used, the offset value must be greater than or equal to
0.

* Do not push the file position indicator out of the file

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

83

Random Access: ftell

* The ftell() takes just one argument, which is a file pointer, and
returns the current position of the file position indicator.

* ftell() is used to return to a specified file position after performing
one or more //O operations
* The position returned by ftell() is measured from the beginning of
the file:
* For binary streams, the value returned by ftell() represents the
actual number of characters from the beginning of the file.
* For text streams, the value returned by ftell() represents an
implementation-defined value that has meaning only when
used as an offset to an fseek() call.

‘\uﬂ"' Ui
8

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Random Access Example

* Consider a large data file composed of records, where each record
is a PERSONALSTAT structure, as declared earlier weeks.

* Suppose that the records are arranged randomly, but we want to
print them alphabetically by the surname field. First, you need to
sort the records.

* We want to avoid sorting as it will take a lot of time and I/O
operations.

* Instead of sorting, let’s create an index and sort only the index

A G
& Ve

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

84

Random Access Example

Suppose that the first five records have the following values.

Jordan, Larry 043-12-7895 5-11-1954

Bird, Michael 012-45-4721 3-24-1952

Erving, Isiah 065-23-5553 11-01-1960

Thomas, Earvin 041-92-1298 1-21-1949

Johnson, Julius 012-22-3365 7-15-1957
The key/index pairs would be

index key

0 Jordan, Larry

1 Bird, Michael

2 Erving, Isiah

3 Thomas, Earvin

4 Johnson, Julius

Instead of physically sorting the entire records, we can sort the key/index pairs
by index value:

Bird, Michael
Erving, Isiah
Johnson, Julius
Jordan, Larry
Thomas, Earvin

WO BN

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Random Access Example

* Let’s create the data file first:
#include <stdio.h>
typedef struct {
unsigned int day : 5;
unsigned int month : 4;
unsigned int year : 11;
} DATE;
typedef struct {
char ps_name[19], ps_tcno[11];
DATE ps_birth_date;
} PERSONALSTAT;
//to be continued in the next slide

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

85

Random Access Example

int main(){

int j; FILE *fp; unsigned int val;

PERSONALSTAT ps2[4];

fp=fopen("records.dat", "wb");

for(j=0; j<4; j++){
printf("Enter name of the %d-th person:\n", j+1);
scanf("%s", ps2[j].ps_name);
printf("Enter tcno of the %d-th person:\n", j+1);
scanf("%s", ps2[j].ps_tcno);
printf("Enter the birth-date (day) of the %d-th person:\n", j+1);
// NOT ALLOWED: scanf("%u", &ps2[j].ps_birth_date.day);
scanf("%u", &val); ps2[j].ps_birth_date.day=val;
printf("Enter the birth-date (month) of the %d-th person:\n", j+1);
scanf("%u", &val); ps2[j].ps_birth_date.month=val;
printf("Enter the birth-date (year) of the %d-th person:\n", j+1);
scanf("%u", &val); ps2[j].ps_birth_date.year=val;
fwrite(&ps2[j], sizeof (PERSONALSTAT), 1, fp);

}

fclose(fp); return 0;

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Random Access Example

* Now let’s create and sort the index:

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h> // Header file for gsort()
#include <string.h> // for the strcmp function()
#define MAX_REC_NUM 1000
#define NAME_LEN 19
typedef struct {
unsigned int day : 5;
unsigned int month : 4;
unsigned int year : 11;
} DATE;
typedef struct {
char ps_name[NAME_LEN], ps_tcno[11];
DATE ps_birth_date;
} PERSONALSTAT;

// structure definition for the index files for our records:
typedef struct {
int index;
char key[NAME_LEN];
} INDEX;
//to be continued in the next slide

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

86

Random Access Example

/* Reads up to max_rec_num records from a file and stores the key field of each record in an index
array. Returns the number of key fields stored. */
int get_records(FILE* data_file, INDEX names_index[], int max_rec_num){

int offset = @, counter = @, k, nm = NAME_LEN;

char namei[NAME_LEN];

// get only the name of the 1st PERSON: (the first 19 chars is for name field)
nm=fread(namei, 1, NAME_LEN, data_file);
for (k = @; counter < max_rec_num &% nm== NAME_LEN; k++){
strcpy(names_index[k].key, namei);
// jump into the beginning of the next person's (next record's) starting point:
offset += sizeof (PERSONALSTAT);
fseek(data_file, offset, SEEK_SET);
counter++;
// get only the name of the i-th PERSON: (the first 19 chars for each person/record)
nm=fread(namei, 1, NAME_LEN, data_file);
}
return counter;

}

//to be continued in the next slide

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Random Access Example

/* Sort an array of NAMES_INDEX structures by the name field. There are index count elements to be
sorted. Returns a pointer to the sorted array. This function will be required for the gsort function
to provide a means of comparison. */
int compare_func(INDEX *p, INDEX *q){
return strcmp(p->key, q->key);
/* <@: the first character that does not match has a lower value in ptrl than in ptr2
0: the contents of both strings are equal
>0: the first character that does not match has a greater value in ptrl than in ptr2 */

void sort_index(INDEX names_index[], int index_count) {
int j;
int (*pf) (); pf = compare_func;
// Assign values to the index field of each structure:
for (j = ©; j < index_count; j++)

names_index[j].index = j;

gsort(names_index, index_count, sizeof(INDEX), pf);

}

//to be continued in the next slide

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

87

Random Access Example

/* Print the records in a file in the order * indicated by the index array. */
void print_indexed_records(FILE * data_file, INDEX index[], int index_count){
PERSONALSTAT ps;
int j;
for (j = @; j < index_count; j++){
if (fseek(data_file, sizeof(PERSONALSTAT) * index[j].index, SEEK_SET))
exit(1);
fread(&ps, 1, sizeof(PERSONALSTAT), data_file);
printf("%20s, %u, %u, %u, %12s\n", ps.ps_name, ps.ps_birth_date.day,
ps.ps_birth_date.month, ps.ps_birth_date.year, ps. ps_tcno);
}
}

//to be continued in the next slide

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Random Access Example

/* To make this program complete, we need a main() function that calls these other functions. We
have written main() so the filename can be passed as an argument.*/
int main(int argc, char *argv[]){
FILE *data_file, *index_file; static INDEX index[MAX_REC_NUM]; int num_recs_read; char *filename;
if (argc < 2) {
printf("Error: must enter the name of the record file\n");
printf("Filename: "); filename=malloc(60); scanf("%s", filename);

}

else filename = argv[1l];

if ((data_file = fopen(filename, "rb")) == NULL){

printf("Error opening file %s.\n", filename); exit(1);
}
num_recs_read = get_records(data_file, index, MAX_REC_NUM) ;
printf("num_recs_read: %d\n", num_recs_read);
sort_index(index, num_recs_read);
printf("After the sorting\n");
print_indexed_records (data_file, index, num_recs_read);
fclose(data_file);
return 0;

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

88

File Management Functions

* remove(): Deletes a file
* int remove (const char* szFileName);

* rename(): Renames a file
* int rename (const char* szOldFileName, const char* szNewFileName);

* tmpfile(): Creates a temporary binary file
* FILE* tmpfile ();

* tmpnam():
e char* tmpnam (char caNamel[]);

* Generates a string that can be used as the name of a temporary file. Can return
unsafe characters such as \s therefore it should be sanitized.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Bu yansi ders notlarinin dizeni icin bog birakilmistir.

_

Yapisal Programlama Dersi Notlari

The Preprocessor

Structural Programming
by Z. Cihan TAYSI
additions by Yunus Emre SELCUK

Outline

* Macro processing
* Macro substitution
* Removing a macro definition
* Macros vs. functions
* Built-in macros
* Conditional compilation
* Testing macro existence

* Include facility
¢ Line control

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimd

Yapisal Programlama Dersi Notlari

90

Macros

* All preprocessor directives
begin with a pound sign (#),
which must be the first
nonspace character on the line

* Unlike C statements, a macro
command ends with a newline,
not a semicolon.

* to span a macro over more than
one line, enter a backslash
immediately before the newline

#define LONG_MACRO “This is a very long \
macro that spans two lines”

Yildiz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Macro Substitution

* The simplest and most
common use of macros is to
represent numeric constant
values.

* Itis also possible to create char buf[BUFF_LEN];

function like macros

#define BUFF_LEN (512)

char buf[(512)];

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

91

Function Like Macros

* Be careful not to use
e’ at the end of macro
* or ‘=" in macro definition

* No type checking for macro
arguments

* Try to expand min macro example
for three numbers

Example 1:
#define MUL_BY_TWO(a) ((a) + (a))

j= MUL_BY_TWO(5);
f=MUL_BY_TWO(2.5);

Example 2 :
#define MIN(a, b) ((a) < (b) ? (a) : (b))

Yildiz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Side Effect

a = MIN(b++, c);

a= ((b++) <(c) ? (b++) : (c));

#define MIN(a,b) ((a) < (b) ? (a) : (b)) |* Remember min macro

* Suppose, for instance, that
we invoked the min macro
like this!

* The preprocessor
translates this into !

* Try macro and
corresponding function
with x=6, y=7 and see the
difference

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

92

Macros vs. Functions

Advantages

* Macros are usually faster than
functions, since they avoid the
function call overhead.

* No type restriction is placed on
arguments so that one macro
may serve for several data

types.

Disadvantages

* Macro arguments are reevaluated at
each mention in the macro body, which
can lead to unexpected behavior if an
argument contains side effects!

* Function bodies are compiled once so
that multiple calls to the same function
can share the same code. Macros, on
the other hand, are expanded each time
they appear in a program.

Though macros check the number of
arguments, they don’t check the
argument types.

It is more difficult to debug programs
that contain macros, because the source
code goes through an additional layer of
translation.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

* Once defined a macro name
retains its meaning until the
end of the source file.

* or until it is explicitly removed
with an #undef directive.

* The most typical use of
#undef is to remove a
definition so you can
redefine it.

Removing a Macro Definition

#define FALSE 1

/* code requiring FALSE = 1*/
#undef FALSE

#define FALSE O

/* code requiring FALSE = 0*/

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

93

Built-in Macros — |

__LINE__

* expands to the source file line number on which it is invoked.

__FILE__

* expands to the name of the file in which it is invoked.

__TIME__

* expands to the time of program compilation.

__DATE__

* expands to the date of program compilation.

__STDC__

* Expands to the constant 1, if the compiler conforms to the ANSI Standard.

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Built-in Macros — 11

void print_comp() {
printf(“This utility compiled on %s at %s\n”,
__DATE__, __TIME_.);

void print_loc() {
printf(“This message is at %d line in %s\n?”,
__LINE__, __FILE_.);

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

94

Conditional Compilation —|

* The preprocessor enables you to screen out portions of source code
that you do not want compiled.
* This is done through a set of preprocessor directives that are similar to if and
else statements.
* The preprocessor versions are
* #if, ttelse, telif, #endif

* Conditional compilation particularly useful during the debugging
stage of program development, since you can turn sections of your
code on or off by changing the value of a macro

* Most compilers have a command line option that lets you define macros
before compilation begins.

¢ gcc —DDEBUG=1 test.c

Yild1z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Conditional Compilation — Il

* The conditional expression in an #if
or #elif statement need not be

enclosed in parenthesis. #if x==1
* Blocks of statements under the #undef 2
control of a conditional #define X 0

preprocessor directive are not

enclosed in braces. #elif x ==

Every #if block may contain any #undef X
number of #elif blocks, but no #define X 3
more than one #else block, which

should be the last one! #else '
* Every #if block must end with an #define y 4
#endif directive! #endif

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

95

Conditional Compilation — Il

#if defined TEST #if defined (TEST)
#if defined macro_name #ifdef macro_name
#if !defined macro_name #ifndef macro_name

Yildiz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

Include Facility

* The #include command has two forms
* #include <filename> : the preprocessor looks in a list of implementation-
defined places for the file. In UNIX systems, standard include files are often
located in the directory /usr/include
* #include “filename” : the preprocessor looks for the file according to the file
specification rules of operating system. If it can not find the file there, it
searches for the file as if it had been enclosed in angle brackets.

* The #include command enables you to create common definition
files, called header files, to be shared by several source files.
* Traditionally have a .h extention
 contain data structure definitions, macro definitions, function prototypes and
global data

Yildrz Teknik Oniversitesi - Bilgisayar Mihendislifi BoLlimdi

Yapisal Programlama Dersi Notlari

96

Line Control

* Allows you to change compiler’s
knowledge of the current line
number of the source file and the
name of the source file.

* The #line feature is particularly
useful for programs that produce C
source text.

* For example yacc (Yet Another
Compiler Compiler) is a UNIX utility
that facilitates building compilers.

main() {
#line 100

printf(“Current line :%d\nFilename :

%s\n\n”, _ LINE_ , _ FILE_);
#line 200 “new name”

printf(“Current line :%d\nFilename :

%s\n\n”, _ LINE_ , _ FILE_);

* We will not delve into further detail.

Yildiz Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimi

—

Bu yansi ders notlarinin dizeni icin bog birakilmistir.

Yapisal Programlama Dersi Notlari

97

Storage Classes

Structural Programming
by Z. Cihan TAYSI
Additions by Yunus E. SELCUK

Outline

* Fixed vs. Automatic duration
* Scope

* Global variables

* The register specifier

* Storage classes

* Dynamic memory allocation

I

Yapisal Programlama Dersi Notlari

98

Fixed vs. Automatic Duration — |

* Scope is the technical term that denotes the region of the C source text in
which a name’s declaration is active.
* Duration describes the lifetime of a variable’s memory storage.

* Variables with fixed duration are guaranteed to retain their value even after their
scope is exited.

* There is no such guarantee for variables with automatic duration.
* A fixed variable is one that is stationary, whereas an automatic variable is

one whose memory storage is automatically allocated during program
execution.

* Local variables (whose scope limited to a block) are automatic by default.
However, you can make them fixed by using keyword static in the
declaration.

* The auto keyword explicitly makes a variable automatic, but it is rarely used
since it is redundant.

—

Fixed vs. Automatic Duration — I

void increment (void) {

* Fixed variables initialized only once,

intj=1; whereas automatic variables are initialized
static int k= 1; each time their block is reentered.

i++: . . .

P * The increment() function increments two
k++;

’ variables, j and k, both initialized to 1.
printf(*j : %d\t k:%d\n”, j, k); * j has automatic duration by default

} * k has fixed duration because of the static
main (void) { keyword

increment(); // j:2 k:2
increment(); //j:2 k:3
increment(); //j:2 k:4

_

Yapisal Programlama Dersi Notlari

Fixed vs. Automatic Duration — IlI

void increment (void) { * When increment() is called the second
intj=1; time,
static int k = 1; * memory for j is reallocated and j is
4 reinitialized to 1.
Kt * k has still maintained its memory address and
’ is NOT reinitialized.
printf(“j : %d\t k:%d\n", j, k);

* Fixed variables get a default initial value of
zero.

}

main (void) {
increment();//j:2 k:2
increment();//j:2 k:3
increment();//j:2 k:4

—

Scope -1

* The scope of a variable determines the region over which you can
access the variable by name.

* There are four types of scope;

* Program scope signifies that the variable is active among different source
files that make up the entire executable program. Variables with program
scope are often referred as global variables.

* File scope signifies that the variable is active from its declaration point to the
end of the source file.

* Function scope signifies that the name is active from the beginning to the
end of the function.

* Block scope that the variable is active from its declaration point to the end of
the block which it is declared.

* A block is any series of statements enclosed in braces.
* This includes compound statements as well as function bodies.

_

Yapisal Programlama Dersi Notlar1 100

Scope—I

inti; // Program scope
static int j; // File scope Program Scope
func (intk) { // function scope File Scope
int m; // function scope FURETIGh
{ Scope
int n; // Block scope Block
Scope
}
}

Scope -l

* A variable with a block scope can NOT be accessed outside its block.

foo (void) { + ltis also possible to declare
int j, ar[20]; a variable within a nested
A, block.
{ // Begin debug code * can be used for
int j; /* This j does not debugging purposes.
conflict with other j’s.*/ see the code on the
for(j=0; j <= 10; ++j) left side of the slide!
printf(“%d\t”, ar[j]);
} // End debug code...
}

* Although variable hiding is useful in situations such as these, it can also lead
to errors that are difficult to detect!

—

Yapisal Programlama Dersi Notlar1 101

Scope -1V

* Function scope
* The only names that have function scope are goto labels.

* Labels are active from the beginning to the end of a function.
* This means that labels must be unique within a function
« Different functions may use the same label names without creating conflicts

Scope-V

* File & Program scope
* Giving a variable file scope makes the variable active through out the rest of
the file.

« if a file contains more than one function, all of the functions following the declaration
are able to use the variable.

* To give a variable file scope, declare it outside a function with the static keyword.

* Variable with program scope, called global variables, are visible to routines in
other files as well as their own file.

* To create a global variable, declare it outside a function without static keyword

Yapisal Programlama Dersi Notlar1 102

Global Variables

* In general, you should avoid using global variables as much as
possible!
* they make a program harder to maintain, because they increase complexity
* create potential for conflicts between modules
* the only advantage of global variables is that they produce faster code

* There are two types of declarations, namely, definition and allusion

* An allusion looks just like a definition, but instead of allocating
memory for a variable, it informs the compiler that a variable of the
specified type exists but is defined elsewhere.

e externint j;

* The extern keyword tells the compiler that the variables are defined
elsewhere.

—

The register Specifier

* The register keyword enables you to help the int strlen (register char *p)
compiler by giving it suggestions about which {
variables should be kept in registers.
* itis only a hint, not a directive, so compiler is free
to ignore it! register int len=0;
* The behavior is implementation dependent. while(*p++) {

* Since a variable declared with register might

never be assigned a memory address, it is len++;
illegal to take address of a register variable. }

* Atypical case to use register is when you use a return len;
counter in a loop. }

_

Yapisal Programlama Dersi Notlar1 103

Storage classes summary

e auto
* superfluous and rarely used.

* static

In declarations within a function,
static causes variables to have
fixed duration. For variables
declared outside a function, the
static keyword gives the variable
file scope.

* extern

* For variables declared within a
function, it signifies a global
allusion. For declarations outside
of a function, extern denotes a
global definition.

* register

* It makes the variable automatic
but also passes a hint to the
compiler to store the variable in a
register whenever possible.

* const

* The const specifier guarantees
that you can NOT change the
value of the variable.

« volatile

* The volatile specifier causes the
compiler to turn off certain
optimizations. Useful for device
registers and other data segments
that can change without the
compiler’s knowledge.

—

Yapisal Programlama Dersi Notlari

104

