Heap Sort

Heap Sort

 Heap sort iIs a comparison based sorting
technigque based on Binary Heap data structure.

e |t is similar to selection sort where we first find

Binary Heap

A Binary Heap is a Complete Binary Tree where
items are stored in a special order such that
value in a parent node is greater(or smaller) than

https://www.geeksforgeeks.org/binary-heap/

Heap Sort Algorithm

* 1. Build a max heap from the input data.

-

he heap

NIs point, the largest item Is stored at t

. Replace it with the

e

ast itemr

Of

Priority Queue

® @ @

@ W ® W . O
Pai™s s e
@O0 D0 ®: ol X 3

(a) (b))

FOR

JON PON
JOSI JOGIN©
®@®®@@ @ 0 @

00® ®O6

) (e)

@ Jou |

N o N) i
J 0® ® ® O®® ©® © 0O e
006 ®0® ®0®

) (h) (1)

Heap Sort Complexity

Table 3.14.3: Fast sorting algorithm's best, average, and worst case runtime complexity.

Sorting algorithm Best case runtime complexity Average case runtime complexity Worst case runtime complexity
Quicksort O(NlogN) O(NlogN) O(N?)

Merge sort O(NlogN) O(NlogN) O(NlogN)

Heap sort O(NlogN) O(NlogN)

Radix sort O(N) O(N)

#include<stdio.h> void main()
#include <conio.h> {
void heapify_function(int arr[])

int arr[100],n,temp,last,1i;
{

int in: clrscr();
n=arrﬁ®i; printf("How many Numbers you want to enter in your array: \n");
for(i=n/2;i>=1;i--) scanf("%d" ,&n);
adjust(arr,i); printf("Enter Elements in array:\n");
} for(i=1l;i<=n;1i++)

void adjust(int arr[],int 1) scanf("%d" ,&arr[i]);

{ Lt 4t el arr[@]=n;
int j,temp,n,K=1; . . .
n=arr[0]; heapify_function(arr);

while(2*i<=n && k==1) whileCarr[0] > 1)
{ {
j=2%i; last=arr[@];
if(jf1§=n && arr[j+1] > arr[j1) temp=arr([1];
J=1+1; arr[1]=arr[last];
ifC arr[§] < arr[il) arrllast]=temp;
k=0 arr[@]--;
else adjust(arr,1);
{
temp=arr[i];
arrfil=arr(jl; printf("Array After Heap Sort\n");
arr[j]=temp; . . :
i for(i=1l;i<=n;1i++)
’ printf("%d ",arr[i]);
getch(Q);
}

Advantages of Heap Sort

* |t has a logarithmic time complexity

* Always suggested for huge arrays.

~ ’ X 8 y A

lace sorting

Disadvantages of Heap Sort

 |tis not a stable algorithm, which means the order of the
same element may be changed.

e Stable means if the two elements have the same key,
they remain in the same order or positions. But that is
not the case for Heap sort.

Queue

Back Front

YT -

Priority Queue

Back Front

llll T B/ -

Enqueue

Priority Queue

* Priority Queue is an extension of with
following properties.

* Every item has a priority associated with it.

http://quiz.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

Priority Queue Operations

* insert(item, priority): Inserts an item with given
priority.

+ getHighestPriority(): Returs the highest

Applications of Priority
Queue

« CPU Scheduling

https://www.geeksforgeeks.org/greedy-algorithms-set-7-dijkstras-algorithm-for-adjacency-list-representation/
https://www.geeksforgeeks.org/greedy-algorithms-set-7-dijkstras-algorithm-for-adjacency-list-representation/
https://www.geeksforgeeks.org/greedy-algorithms-set-5-prims-mst-for-adjacency-list-representation/
https://www.geeksforgeeks.org/applications-of-queue-data-structure/

Implementation of Priority
Queue

insert
Linked List 0(n)

Binary Heap 0(log n)

Binary Search Tree 0(log n)

Priority Queue Operations -
Insert

1. Select the element to be deleted.

Priority Queue
Operations -
Delete

2. Swap it with the last element.

3. Remove the last element.

4. Heapify the tree.

, AN

Sy % " A
A7

ncoding

‘Huffmann E

Data Compression

* |n computer science and information theory, a

Huffman code is a particular type of optimal
prefix code that is commonly used for lossless

data compression.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Prefix_code
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Variable-length_code

Huffman Encoding

Input and Output

Input:

A string with different characters, say “ACCEBFFFFAAXXBLKE"”
OQutput:

Code for different characters:
Data: Frequency: Code: 0000
Data: Frequency: Code: 0001
Data: Frequency: Code: 001
Data: Frequency: Code: 01
Data: Frequency: Code: 100
Data: Frequency: Code: 101
Data: Frequency: Code: 110
Data: Frequency: Code: 111

Character | [a|b|d]e|flhjilkinjolr|stjulv
" [Frequency [0S [T 3 [7[s[T[Tt [4[T][S[1][2[T]1

Huffman Coding Steps - |

1. Calculate the frequency of each character in the string.

2. Sort the characters in increasing order of the frequency. These are stored in a

priority queue Q .

3. Make each unique character as a leaf node.

4. Create anempty node z . Assignthe minimum frequency to the left child of z and

assign the second minimum frequency to the right child of z . Set the value of the

z as the sum of the above two minimum frequencies.

Huffman Coding

Huffman Coding Steps - |

. Remove these two minimum frequencies from q and add the sum into the list of

frequencies (* denote the internal nodes in the figure above).

. Insertnode z into the tree.

. Repeat steps 3 to 5 for all the characters.

Huffman Coding Steps - |l

8. For each non-leaf node, assign O to the left edge and 1to the right edge.

Pk i g 3

2 It) Mt >,

¢ P S5 2R NS,
") AT (A Rt E S e Y, Y

= 'L;w 3

BE CONTINUED..

LAY i o
XN 3 3
i i ba ,\r*

N

1O

