Data Structures and
Algorithms

Counting Sort

» Counting sort is a sorting algorithm that sorts the
elements of an array by counting the number of
occurrences of each unique element

Y count aray [

7 8

ounting Sort -

Counting Sort Complexi

Time Complexities:

There are mainly four main loops. (Finding the greatest value can be

done outside the function.)

for-loop time of counting
Ist O(max)
2nd Of(size)
3rd O(max)

4th O(size)

Overall complexity = 0(max)+0(size)+0(max)+0(size) = O(max+size)

e Worst Case Complexity: 0(n+k)

e Best Case Complexity: 0(n+k)

e Average Case Complexity: 0(n+k)

In all the above cases, the complexity is same because no matter how

the elements are placed in the array, the algorithm goes through n+k

times.

Space Complexity:

The space complexity of Counting Sort is 0(max) . Larger the range of

elements, larger is the space complexity.

Radix Sort

 Radix sort Is a sorting technique that sorts the
~ elements by first ividual digits of

T e) : 5 ol ~ SN s (2 ¥
! \jE g \ 3 R i 3 bl 7 35 B NPty) ¥ Kb y
AR e S, A AR B T A G e L SRR Wl Wit eSS SN R R N S BT RIS 1
Sg e e bl % s Bt Rl SRss e sl ok S ¥ s R " 5% i ® i3 h i
~ | i ‘

Radix Sort -

Initial Array

[121, 432, 564, 23, 1, 45, 788] .

sorting the integers according to units, tens and
hundreds place digits

Radix sort Complexity

O(d(n+k))

O(nlog n)

If we take very large digit numbers or the number of other bases like
32-bit and é64-bit numbers then it can perform in linear time however

the intermediate sort takes large space.

This makes radix sort space inefficient. This is the reason why this sort

Is not used in software libraries.

Radix Sort Complexity

Radix sort takes in a list of n integers which are in base b (the radix) and so each number has at most d digits where d = | (log, (k) + 1) |
and k is the largest number in the list. For example, three digits are needed to represent decimal 104 (in base 10). It is important that
radix sort can work with any base since the running time of the algorithm, O(d(n + b)), depends on the base it uses. The algorithm runs

in linear time when b and n are of the same size magnitude, so knowing n, b can be manipulated to optimize the running time of the

algorithm.

Radix sort is a stable sort, which means it preserves the relative order of elements that have the same key value. This is very important.

Why Radix Sort

Counting sort is a linear time sorting algorithm that sort in O(n+k)
time when elements are in range from 1 to k.

What if the elements are in range from 1 to n°?

We can't use counting sort because counting sort will take O(n?)

which is worse than comparison based sorting algorithms. Can
we sort such an array in linear time?

Radix Sort Variants

3 .Jﬁ"?{%k i

¢
&

SO

[SD Radix sort

The LSD variant of radix sort performs a stable counting sort on the list for
each digit, starting from the least significant (right-most) digit. It runs in

O(wn) time where n is the input size and w is the word size (the number of
digits in the largest number for the given radix).

Complexity

Time Space

Worst case Best case Average case Worst case

O(n + r) auxiliary

here:

® 1 =inputsize
® w =word size

e 1 =radix

Sorting [28,11,5] where r=2 and w=5

When it's fast

Since comparison sorts cannot perform better than O(nlogn), LSD radix
sort is considered one of the best alternatives provided the word size w is
expected to be less than log n.

It does however have limitations on the type of keys that can be sorted in that
they need to have some way of being split up (ie. the radix), so it's typically
only used for string (where » = 255 for ASCII characters) and integer keys.

L

B

Key-indexed counting

Task: sort an array a[] of N integers between O and R-1

Plan: produce sorted result in array temp|]

1. Count frequencies of each letter using key as index

2. Compute frequency cumulates

3. Access cumulates using key as index to find record positions.
4. Copy back into original array al]

int N = a.length;
int[] count = new int[R];

count for (int i = 0; i < N; i++)

frequencies™ count[a[i]+1]++;

compute _)for (int k =1; k < 256; k++)

cumulates count[k] += count[k-1];

0
1
2
3
4
5
6
7
8
9

move _)for (int i = 0; 1 < N; i++)
records temp[count[a[i]++]] = a[i]

[
o

[
[

copy back _J for (int i = 0; i < N; i++)
af[i] = temp[i];

Least-significant-digit-first radix sort

LSD radix sort.
e Consider characters d from right to left
e Stably sort using dth character as the key via key-indexed counting.

sort key sort key

v v

a a

o R

c
d

(o]

a

a

alale|le|le|a|b| 0| b e

© ©® J o6 U1 W N K O
O | (D0 | Qa 0 | H| 0

© 0O 94 o0 U W N KB O
© O 94 o0 U W N KB O
W ® J4 6 U1 W N KB O

=

o

(]

[

o

O | |0 | Hh | QA (0| Hh|Wp

(1 o P I o PR o PO I o I © PR o PO I o PR o R I o 3

o

[
o
=
o

[
[
W

e 11

o
()
[
[
()
=
=

sort must be stable
arrows do not cross

LSD radix sort: Why does it work?

Pf 1. [thinking about the past]

e If two strings differ on first character,
key-indexed sort puts them in proper relative order.

e If two strings agree on first character,
stability keeps them in proper relative order.

Pf 2. [thinking about the future]

e If the characters not yet examined differ,
it doesn't matter what we do now.

e If the characters not yet examined agree,
stability ensures later pass won't affect order.

© 0 J4 oo O x W NN B O

O | |0 | Hh | | |0 QD0 H| 0|
oo o |0 Qa0 |0 | p|P
(1 I PR I o P o PO I B I o O o O A o PO I o AR I o AN B o &

A

in order
by previous
passes

O 0 4 o U1 W NN B O

(—

Hh | | Hh |0 QA A0 |0 |0 0| P

o (0o | |0 || [P OO M| QO

O Al | D Q|00 |0 | Q|| |0

LSD radix sort implementation

Use k-indexed counting on characters, moving right to left

public static void lsd(String[] a)
{
int N = a.length;
int W = a[0].length;
for (int d = W-1; d > 0; d--)
{
int[] count = new int[R];
for (int i = 0; i < N; i++)
count[a[i].charAt(d) + 1]++; “— frequencies
key-indexed for (int k = 1; k < 256; k++)
counting count[k] += count[k-1]; ;ﬂmﬁxg
for (int i = 0; 1 < N; i++)
temp[count[a[i] .charAt(d)] ++] i]; AN
for (int i = 0; 1 < N; i++)
af[i] = temp[i]; copy back

Assumes fixed-length keys (length = W)

Sorting Challenge

Problem: sort a huge commercial database on a fixed-length key field
Ex: account number, date, SS number

B14-99-8765
756-12-AD46
CX6-92-0112

Which sorting method to use? o
1. insertion sort 375-99-QWAX
Cv2-59-0221

2 mer'gesor'T *7-55-032"
3. quicksort Txo-. .s88
4

. 715-YT-013C
LSD r'adlx sort MJO0-PP-983F
908-KK-33TY
BBN-63-23RE
48G-BM-912D
982-ER-9P1B
WBL-37-PB81
810-F4-J87Q
LE9-N8-XX76
908-KK-33TY
B14-99-8765
CX6-92-0112
CV2-59-0221
332-WX-23SQ
332-6A-9877

Sorting Challenge

Problem: sort huge files of random 128-bit numbers
Ex: supercomputer sort, internet router

Which sorting method to use?
1. insertion sort
2. mergesort
3. quicksort
4

. LSD radix sort

MSD Radix Sort

Most-significant-digit-first radix sort.

e Partition file into R pieces according to first character
(use key-indexed counting)

e Recursively sort all strings that start with each character
(key-indexed counts delineate files to sort)

(o)

[\

© O 4 o0 1 A W N KFH O
O|Hh | 0| 0 Hh H| Q0
©W O 49 o0 U A W N FH O

11

)

sort key

e \
sort these

«— independently

/ (recursive)

MSD radix sort implementation

Use key-indexed counting on first character, recursively sort subfiles

public static void msd(String[] a)
{ msd(a, 0, a.length, 0); }

private static void msd(String[] a, int lo, int hi, int d)
{
if (hi <= lo + 1) return;
int[] count = new int[256+1]; S
for (int i = 0; i < N; i++) frequencies
count[a[i] .charAt(d) + 1]++; G
key-indexed ___, | for (int k = 1; k < 256; k++) cumulates
counting count[k] += count[k-1]; ove
for (int i = 0; i < N; i++) records
temp[count[a[i] .charAt(d)]++]
for (int i = 0; i < N; i++) copy back
a[i] = temp[i];
for (int i = 0; i < 255; i++)
msd(a, 1 + count[i], 1 + count[i+l], d+1);

MSD radix sort: potential for disastrous performance

Observation 1: Much too slow for small files
e all counts must be initialized to zero

e ASCIT (256 counts): 100x slower than copy pass for N = 2.
e Unicode (65536 counts): 30,000x slower for N = 2

Observation 2: Huge number of small files because of recursion.
e keys all different: up to N/2 files of size 2

e ASCIT: 100x slower than copy pass for all N.
e Unicode: 30,000x slower for all N

\ switch to Unicode might be a big surprise!

Solution. Switch to insertion sort for small N.

MSD radix sort bonuses

Bonus 1: May not have to examine all of the keys.

S o o W N B O
a0 |0 |00 | W
P PP DD R0
(o PRI o NN o 1 DO I o PR I o PR I o PR

<«—— 19/24 = 80% of the characters examined

Bonus 2: Works for variable-length keys (String values)

Cc

\0

n

g oo 0 W NN B O

Implication: sublinear sorts (1)

<«— 19/64 ~ 30% of the characters examined

MSD string sort implementation

Use key-indexed counting on first character, recursively sort subfiles

public static void msd(String[] a)
{ msd(a. 0. a.length, 0);

private static void msd(String[] a, int 1, int r, int d)
{
if (r <=1 + 1) return;
int[] count = new int[256];
for (int i = 0; i < N; i++)
count[a[i] .charAt(d) + 1]++;
for (int k = 1; k < 256; k++)
key-indexed __ count[k] += count[k-1];
el for (int i = 0; i < N; i++)
temp[count[a[i] .charAt(d)]++] = a[i];
for (int i = 0; 1 < N; i++)
a[i] = temp[i];
for (int 1 = 1; i < 255; i++)
msd(a, 1 + count[i], 1 + count[i+l], d+1);

don't sort strings that start with "\O' (end of string char)

Sorting Challenge (revisited)

Problem: sort huge files of random 128-bit numbers
Ex: supercomputer sort, internet router

Which sorting method to use?
1. insertion sort
2. mergesort
3. quicksort
v 4. LSD radix sort on MSDs

216 = 65536 counters

divide each word into 16-bit “chars'
sort on leading 32 bits in 2 passes
finish with insertion sort

examines only ~25% of the data

()

MSD radix sort versus quicksort for strings

Disadvantages of MSD radix sort.

e Accesses memory "randomly" (cache inefficient)

e Inner loop has a lot of instructions.

e Extra space for counters.

e Extra space for temp (or complicated inplace key-indexed counting).

Disadvantage of quicksort.

e NlgN, not linear.

e Has to rescan long keys for compares
e [but stay tuned]

Divide-and-Conqguer

= St

4 AT) R 5 } 4 I 4 - , -
7 A & J A0 X 2 : .
L%) e ‘ Sai

il
28 T iy
«) o (o2
§ iy s W bt o ok, TR A > :) s

