Data Structures and
Algorithms

Depth-First-Search

-irst Search (DFES) algorithm traverses a
n a depthward motion and uses a stack

N 1 ; i A3, 3 71) j : a0 gy 4 e | Bl : ’ : e] st Q)

AT L% 5 : S T y ; 2 s QR0)
2L R ;) N ¢ g i?fv S B PR N s LA D X ! % g s o N !
) ¥ y i my e v ; & T y) / N E W 7L ; S NSRT L,
2 { 7 i £ -

DES - Necessary Steps

Rule 1 - Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a
stack.

Rule 2 - If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all
the vertices from the stack, which do not have adjacent vertices.)

Rule 3 - Repeat Rule 1 and Rule 2 until the stack is empty.

Step

Traversal

s
c J
“. Stack
/ \
(A) B c
\/\\/ /\\/
top+» S
(D Se——
e, Stack
/ s\
A) (B] C)
-
top» A
(=5
. D
Stack
/\ S/\
B c top+» D

Description

Initialize the stack.

Mark S as visited and put it onto the
stack. Explore any unvisited adjacent
node from S. We have three nodes and
we can pick any of them. For this
example, we shall take the node in an
alphabetical order.

Mark A as visited and put it onto the
stack. Explore any unvisited adjacent
node from A. Both S and D are adjacent
to A but we are concerned for unvisited
nodes only.

Visit D and mark it as visited and put onto
the stack. Here, we have B and C nodes,

which are adjacent to D and both are
unvisited. However, we shall again
choose in an alphabetical order.

5
(s)
/\/\ top+| B
(L A) (| B C D
o
A
S
HED Se—
) G Stack
6
/\s\
A W B (¢) top—+|| D
\/\\//\/
A
S
| D ;)
\ 4 Stack
7

top~+

C

A) (8) c) D
\\\///

A

S

Stack

We choose B, mark it as visited and put
onto the stack. Here B does not have any
unvisited adjacent node. So, we pop B
from the stack.

We check the stack top for return to the
previous node and check if it has any
unvisited nodes. Here, we find D to be on
the top of the stack.

Only unvisited adjacent node is from D is
C now. So we visit C, mark it as visited
and put it onto the stack.

DFES - A Closer Look

. Start by putting any one of the graph's vertices on top of a stack.

. Take the top item of the stack and add it to the visited list.

. Create a list of that vertex's adjacent nodes. Add the ones which aren't in the

visited list to the top of stack.

. Keep repeating steps 2 and 3 until the stack is empty.

Visited

Stack

Visited

Stack

Visited

Visited

Visited

Visited

Depth First Search

— _———

-
-

\
\
|
| \
|
|
|
|

FIGURE 3.10 Example of a DFS traversal. (a) Graph. (b) Traversal’'s stack (the first
subscript number indicates the order in which a vertex is visited, i.e.,
pushed onto the stack; the second one indicates the order in which it
becomes a dead-end, i.e., popped off the stack). (c) DFS forest with the
tree and back edges shown with solid and dashed lines, respectively.

PseudoCode for

ALGORITHM DFS(G)

/Implements a depth-first search traversal of a given graph

/Mnput: Graph G = (V, E)

//Output: Graph G with its vertices marked with consecutive integers
// in the order they are first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”

count <0

for each vertex v in V do
if v 1s marked with 0

dfs(v)

dfs(v)
/Ivisits recursively all the unvisited vertices connected to vertex v
//by a path and numbers them in the order they are encountered
/Ivia global variable count
count < count + 1; mark v with count
for each vertex w in V adjacent to v do

if w is marked with 0

dfs(w)

C code for DES

#include <stdio.h>
#include <stdlib.h>

struct node
{
int vertex;
struct node* next;

o
struct node* createNode(int v);

struct Graph
{
int numVertices;
int* visited;
struct node** adjlLists;

b

struct Graph* createGraph(int);

void addEdge(struct Graph*, int, int);
void printGraph(struct Graph¥*);

void DFS(struct Graph*, int);

int main()

{

struct Graph* graph = createGraph(4);
addkEdge(graph, 0, 1);
addEdge(graph, 0, 2);
addEdge(graph, 1, 2);
addEdge(graph, 2, 3);

printGraph(graph);
DFS(graph, 2);

return 0;

C code for DFS

void DFS(struct Graph* graph, int vertex) {
struct node* adjList = graph->adjLists[vertex];
struct node* temp = adjlList;

graph->visited[vertex] = 1;
printf("Visited %d \n", vertex);

while(temp!=NULL) {
int connectedVertex = temp->vertex;

if(graph->visited[connectedVertex] == 0) {
DFS(graph, connectedVertex);
¥

temp = temp->next;

struct node* createNode(int v)
{
struct node* newNode = malloc(sizeof(struct node));
newNode->vertex = v;
newNode->next = NULL;
return newNode;

struct Graph* createGraph(int vertices)

{

struct Graph* graph = malloc(sizeof(struct Graph));
graph->numVertices = vertices;

graph->adjLists = malloc(vertices * sizeof(struct node*));

graph->visited = malloc(vertices * sizeof(int));

int 1;

for (1 = 0; 1 < vertices; 1i++) {
graph->adjLists[i] = NULL;
graph->visited[i] =

b

return graph;

C code for DFS

void addEdge(struct Graph* graph, int src, int dest)
{

struct node* newNode = createNode(dest);
newNode->next = graph->adjLists[src];
graph->adjLists[src] = newNode;

newNode = createNode(src);
newNode->next = graph->adjLists[dest];
graph->adjLists[dest] = newNode;

void printGraph(struct Graph* graph)
{

int v;
for (v = 0; v < graph->numVertices,; v++)
{
struct node* temp = graph->adjlLists[v];
printf("\n Adjacency list of vertex %d\n ", v);
while (temp)
{
printf("%d -> ", temp->vertex);
temp = temp->next;
b
printf("\n");

Breadth-First-Search

Breadt

N First Search (BFS) algorit

M traverses a

N a breadthward motion ar

d uses a

BFS Algorithm

2 Rule 1 - Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a
queue.

2 Rule 2 - If no adjacent vertex is found, remove the first vertex from the queue.

2 Rule 3 - Repeat Rule 1 and Rule 2 until the queue is empty.

Step

Traversal Description

Next, the unvisited adjacent node from S
is C. We mark it as visited and enqueue

N
/

>
o
0

Initialize the queue.

o
N

Queue
s J
p / :\ . We start from visiting S (starting node), Now, S is left with no unvisited adjacent
\\// and mark it as visited. nodes. So, we dequeue and find A.
\E/ Queue
& %
/ /\ We then see an unvisited adjacent node
E " & from S. In this example, we have three From A we have D as unvisited adjacent
' N nodes but alphabetically we choose A, node. We mark it as visited and enqueue
mark it as visited and enqueue it. ;
A
‘\'_)/ Queue

Ny
3

Next, the unvisited adjacent node from S
is B. We mark it as visited and enqueue
it.

>
@
[e]

/
h

@
>

€

dy G d3 €4 f5 b6
97 hg Jo o

FIGURE 3.11 Example of a BFS traversal. (a) Graph. (b) Traversal queue, with the
numbers indicating the order in which the vertices are visited, i.e., added

to (and removed from) the queue. (c) BFS forest with the tree and cross
edges shown with solid and dotted lines, respectively.

PsuedoCode of BFS
Algorithm

ALGORITHM BFS(G)

/Implements a breadth-first search traversal of a given graph
/Mnput: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
Il in the order they are visited by the BFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count <0
for each vertex vin V do
if v is marked with 0

bfs(v)

bfs(v)
/Ivisits all the unvisited vertices connected to vertex v
//by a path and numbers them in the order they are visited
/Ivia global variable count
count < count +1; mark v with count and initialize a queue with v
while the queue is not empty do
for each vertex w in V adjacent to the front vertex do
if w is marked with 0
count < count + 1; mark w with count
add w to the queue
remove the front vertex from the queue

#include <stdio.h>
#include <stdlib.h>
#define SIZE 40

struct queue {
int items[SIZE];
int front;
int rear;

H

struct queue* createQueue();

void enqueue(struct queue* q, int);
int dequeue(struct queue* q);

void display(struct queue* q);

int isEmpty(struct queue* q);

void printQueue(struct queue* q);

struct node
{
int vertex;
struct node* next;

struct Graph

{
int numVertices;
struct node** adjlLists;
int* visited;

¥

struct Graph* createGraph(int vertices);

void addEdge(struct Graph* graph, int src, int dest);
void printGraph(struct Graph* graph);

void bfs(struct Graph* graph, int startVertex);

int main()

{
struct Graph* graph = createGraph(6);
addEdge(graph, 0, 1);
addEdge(graph, 0, 2);
addEdge(graph, 1, 2);
addEdge(graph, 1, 4);
addEdge(graph, 1, 3);
addEdge(graph, 2, 4);
addEdge(graph, 3, 4);

bfs(graph, 0);

return 0;

void bfs(struct Graph* graph, int startVertex) {
struct queue* q = createQueue();

graph->visited[startVertex] = 1;
enqueue(q, startVertex);

while(!isEmpty(q)){
printQueue(q);
int currentVertex = dequeue(q);
printf("Visited %d\n", currentVertex);

struct node* temp = graph->adjLists[currentVertex];

while(temp) {
int adjVertex = temp->vertex;

if(graph->visited[adjVertex] == 0){
graph->visited[adjVertex] = 1;
enqueue(q, adjVertex);

¥

temp = temp->next;

struct node* createNode(int v)
{
struct node* newNode = malloc(sizeof(struct node));
newNode->vertex = v;
newNode->next = NULL;
return newNode;

struct Graph* createGraph(int vertices)

{
struct Graph* graph = malloc(sizeof(struct Graph));
graph->numVertices = vertices;

graph->adjLists = malloc(vertices * sizeof(struct node*));
graph->visited = malloc(vertices * sizeof(int));

int i;

for (1 = 0; 1 < vertices; i++) {
graph->adjLists[i] = NULL;
graph->visited[i] = O;

¥

return graph;

void enqueue(struct queue* q, int value){
if(q->rear == SIZE-1)
printf("\nQueue is Full!!");
else {
if(g->front == -1)
g->front = 0;
g->rear++;
g->items[qg->rear] = value;

dequeue(struct queue* q){
int item;
if(isEmpty(q)){
printf("Queue is empty");
item = -1;
}
else{
item = g->items[q->front];
g->front++;
if(q->front > g->rear){
printf("Resetting queue");
g->front = g->rear = -1;

by

return item;

void printQueue(struct queue *q) {
int 1 = g->front;

if(isEmpty(q)) {
printf("Queue is empty");
} else {
printf("\nQueue contains \n");
for(i = g->front; 1 < g->rear + 1; 1i++)
printf("%d ", q->items[1]);

Comparison of DFS and BFS

TABLE 3.1 Main facts about depth-first search (DFS)
and breadth-first search (BFS)

DFS BFS

Data structure a stack a queue
Number of vertex orderings two orderings one ordering

Edge types (undirected graphs) tree and back edges tree and cross edges

Applications connectivity, connectivity,
acyclicity, acyclicity,
articulation points minimum-edge paths

Efficiency for adjacency matrix O(|V?)) O(V?)

Efficiency for adjacency lists O(V|+ |E)) O(V|+ |E))

