Data Structures and
Algorithms

Graphs

. , graph theory is the study of
, which are mathematical structures used
to model pairwise relations between ob

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#edge

Graphs in Computer Science

* A Graph is a non-linear data structure consisting
of nodes and edges.

 The nodes are sometimes also referred to as
vertices and the edges are lines or arcs that
connect any two nodes in the graph.

Real-life Problems

* Graphs are used to represent networks.

o Paths in a city

Undirected and Directed Graphs

V=A{a,b,c d,e f}, E={(a,c), (a,d), (b c), b, f) (ce)de),le, [}

V — {a’ b’ C’ d’ e’ f}’ E — {(a’ C)’ (b’ C)’ (b’ f)’ (C’ e)’ (d’ a)’ (d’ e)’ (e’ C)’ (e’ f)}'

If a pair of vertices (u, v) is not the same as the pair (v, u), we say that the
edge (u, v) is directed from the vertex u, called the edge’s tail, to the vertex v,
called the edge’s head. We also say that the edge (u, v) leaves u and enters v. A
graph whose every edge is directed is called directed. Directed graphs are also
called digraphs.

Complete, Dense and
Sparse Graphs

A graph with every pair of its vertices connected by an edge is called complete.
A standard notation for the complete graph with |V| vertices is K|y|. A graph
with relatively few possible edges missing is called dense; a graph with few edges

relative to the number of its vertices is called sparse. Whether we are dealing with
a dense or sparse graph may influence how we choose to represent the graph and,
consequently, the running time of an algorithm being designed or used.

Graph Representations

> -
> >
> >
- >
— >
— >

Graph Representations Graphs for computer algorithms are usually repre-
sented in one of two ways: the adjacency matrix and adjacency lists. The adjacency
matrix of a graph with n vertices is an n x n boolean matrix with one row and one
column for each of the graph’s vertices, in which the element in the ith row and
the jth column is equal to 1 if there is an edge from the ith vertex to the jth vertex,
and equal to 0 if there is no such edge. For example, the adjacency matrix for the
graph of Figure 1.6a is given in Figure 1.7a.

Graph Representations - |

If a graph is sparse, the adjacency list representation may use less space
than the corresponding adjacency matrix despite the extra storage consumed by
pointers of the linked lists; the situation is exactly opposite for dense graphs. In

general, which of the two representations is more convenient depends on the
nature of the problem, on the algorithm used for solving it, and, possibly, on the
type of input graph (sparse or dense).

Weighted Graphs

'a | 5 b5->c1

n —485—>¢7 -5 d4
- a1-5b7 >d?2

n - b4 —>c?2
(c)

Weighted Graphs A weighted graph (or weighted digraph) is a graph (or di-
graph) with numbers assigned to its edges. These numbers are called weights or
costs. An interest in such graphs is motivated by numerous real-world applica-
tions, such as finding the shortest path between two points in a transportation or
communication network or the traveling salesman problem mentioned earlier.

Paths and Cycles

Paths and Cycles Among the many properties of graphs, two are important for a
great number of applications: connectivity and acyclicity. Both are based on the
notion of a path. A path from vertex u to vertex v of a graph G can be defined as a

sequence of adjacent (connected by an edge) vertices that starts with # and ends
with v. If all vertices of a path are distinct, the path is said to be simple. The length
of a path is the total number of vertices in the vertex sequence defining the path
minus 1, which is the same as the number of edges in the path. For example, a, c,
b, f is a simple path of length 3 from a to f in the graph in Figure 1.6a, whereas
a,c,e,c,b, fisapath (not simple) of length 5 from a to f.

It is important to know for many applications whether or not a graph under
consideration has cycles. A cycleis a path of a positive length that starts and ends at
the same vertex and does not traverse the same edge more than once. For example,
f,h,i, g, fisacycle in the graph in Figure 1.9. A graph with no cycles is said to
be acyclic. We discuss acyclic graphs in the next subsection.

Special Graphs - Trees

A tree (more accurately, a free tree) is a connected acyclic graph (Figure 1.10a).
A graph that has no cycles but is not necessarily connected is called a forest: each
of its connected components is a tree (Figure 1.10b).

Minimum Spanning Tree

DEFINITION A spanning tree of an undirected connected graph is its connected
acyclic subgraph (i.e., a tree) that contains all the vertices of the graph. If such a
graph has weights assigned to its edges, a minimum spanning tree is its spanning
tree of the smallest weight, where the weight of a tree is defined as the sum of the
weights on all its edges. The minimum spanning tree problem is the problem of
finding a minimum spanning tree for a given weighted connected graph.

Greedy Algorithms

* Greedy is an algorithmic paradigm that builds up a
solution piece by piece, always choosing the next

piece that offers the most obvious and immediate
benefit.

* Greedy algorithms are used for optimization

Greedy Algorithms

1) Kruskal’s Minimum Spanning Tree (MST): In Kruskal’s algorithm, we create a MST
by picking edges one by one. The Greedy Choice is to pick the smallest weight edge
that doesn't cause a cycle in the MST constructed so far.

2) Prim's Minimum Spanning Tree: In Prim’s algorithm also, we create a MST by pick-
ing edges one by one. We maintain two sets: a set of the vertices already included in
MST and the set of the vertices not yet included. The Greedy Choice is to pick the

smallest weight edge that connects the two sets.

3) Dijkstra’s Shortest Path: The Dijkstra’s algorithm is very similar to Prim’s algorithm.

The shortest path tree is built up, edge by edge. We maintain two sets: a set of the ver
tices already included in the tree and the set of the vertices not yet included. The
Greedy Choice is to pick the edge that connects the two sets and is on the smallest
weight path from source to the set that contains not yet included vertices.

4) Huffman Coding: Huffman Coding is a loss-less compression technique. It assigns
variable-length bit codes to different characters. The Greedy Choice is to assign least

bit length code to the most frequent character.

Prim's Algorithm

Tree vertices Remaining vertices Ilustration

a(—, -) b(a, 3) c(—, 00) d(—, o)
e(a, 6) f(a, 5)

b(a, 3) c¢(b, 1) d(—, c0) e(a, 6)
f(b, 4)

c(b, 1) d(c, 6) e(a, 6) f(b, 4)

f(b, 4) d(, 5) e(f, 2)

e(f, 2) d{, 5)

d{, 5)

Example of Prim's algorithm

1 2

Start with a weighted graph Choose a vertex

3 4

Choose the shortest edge Choose the nearest vertex not yet
from this vertex and add it in the solution

5 6

Choose the nearest edge not yet in Repeat until you have a spanning
the solution, if there are multiple tree
choices, choose one at random

C Code for Prim’s Algorithm

Code int main()
#include<stdio.h> {

#include<stdlib.h> int 1 ’j ; total_cost;

printf("Enter no. of vertices:");
#define infinity 9999 scanf("%d",&n);

#define MAX 20

printf("\nEnter the adjacency matrix:\n");
int G[MAX][MAX],spanning[MAX] [MAX],n;

for(i=0;1i<n;1i++)
int prims(); for(j=0;j<n;j++)

scanf("%d",&G[1][F1);

total_cost=prims();
printf("\nspanning tree matrix:\n");

for(i=0;i<n;i++)
{
printf("\n");
for(j=0;3j<n;j++)
printf("%d\t",spanning[i][]j]);

printf("\n\nTotal cost of spanning tree=%d",total_cost);
return 0;

C Code for Prim’s Algorithm

while(no_of_edges>0)

int prims()

{

int cost[MAX][MAX];
int u,v,min_distance,distance[MAX], from[MAX];

int visited[MAX],no_of_edges,i,min_cost,j;

//create cost[][] matrix,spanning[][]
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
if(G[1][J]1==0)
cost[i][j]=infinity;
else
cost[i][j]=G[1][]];
spanning[1i][j]=0;

//initialise visited[],distance[] and from[]
distance[0]=0;
visited[0]=1;

for(i=1;i<n;i++)

{
distance[1i]=cost[0][1];
from[1]=0;
visited[1]=0;

min_cost=0; //cost of spanning tree

no_of_edges=n-1;

//no. of edges to be added

{

//find the vertex at minimum distance from the tree
min_distance=infinity;
for(i=1;i<n;i++)
if(visited[i]==0&&distance[i]<min_distance)
{
v=1;
min_distance=distance[1i];

u=from[v];

//insert the edge in spanning tree
spanning[u][v]=distance[v];
spanning|[v][u]=distance[v];
no_of_edges--;

visited|[v]=1;

//updated the distance[] array
for(i=1;i<n;i++)
if(visited[1i]==0&&cost[1][v]<distance[i])
{
distance[1i]=cost[i][V];
from[i]=v;

min_cost=min_cost+cost|[u][Vv];

return(min_cost);

C Code for Prim’s Algorithm

Output
Enter no. of vertices:6

Enter the adjacency matrix:
031600
305030
150564
605002
036006
004260

spanning tree matrix:
031000
300030
100004
000002
030000
004200

Total cost of spanning tree=13

Kruskal Algorithm

Tree edges Sorted list of edges Ilustration

tztf cf af df ae

4 5 5 6

Kruskal Algorithm

(a)

FIGURE 9.6 New edge connecting two vertices may (a) or may not (b) create a cycle.

C code for Kruskal's Algorithm

void kruskal(Q)
{

#include<stdio.h>

int belongs[MAX],1i,j,cnol,cno?2;
elist.n=0;

#define MAX 30

typedef struct edge

{
int u,v,w;
}edge;

for(i=1;i<n;i++)
for(j=0;j<i;j++)

{
}f(G[i][j]!:O)

typedef struct edgelist
{

elist.datal[elist.n].u=1;
elist.data[elist.n].v=7;
elist.datalelist.n].w=G[1][3j];
elist.n++;

edge data[MAX];
int n;
tedgelist;

}

sort();

edgelist elist;

int G[MAX][MAX],n;
edgelist spanlist;

for(i=0;i<n;i++)
belongs[i]=1i;

void kruskal(Q);

int find(int belongs[],int vertexno);
void unionl(int belongs[],int cl,int c2);
void sort(Q);
void print(Q);

spanlist.n=0;

for(i=0;i<elist.n;i++)

{

cnol=find(belongs,elist.data[i].u);
cno2=find(belongs,elist.datal[i].v);

void main()

{

1f(cnol!=cno2)

{

int 1i,j,total_cost;

spanlist.data[spanlist.n]=elist.data[i];
spanlist.n=spanlist.n+1;
unionl(belongs,cnol,cno2);

printf("\nEnter number of vertices:");
scanf("%d" ,&n);

printf("\nEnter the adjacency matrix:\n");
for(i=0;i<n;i++)

for(j=0;j<n;j++)
scanf("%d" ,&G[11[i1);

int find(int belongs[],int vertexno)

{
}

t .
kruskal(): return(belongs[vertexno]);

print();

C code for Kruskal's Algorithm

void unionl(int belongs[],int cl,int c2)

{

int 1i;

for(i=0;i<n;i++)
1f(belongs[i]==
belongs[i]=cl;

void sort()

{
int 1,3;
edge temp;

for(i=1;i<elist.n;i++)
for(j=0;j<elist.n-1;j++)
if(elist.data[j].w>elist.data[j+1].w)

{
temp=elist.data[j];
elist.data[jl=elist.data[j+1];
elist.data[j+1]=temp;

void print()
{

int 1,cost=0;

for(i=0;i<spanlist.n;i++)

{
printf("\n¥%d\t¥%d\t¥%d" ,spanlist.data[1i].u,spanlist.data[i].v,spanlist.datal[i].w);

cost=cost+spanlist.data[i].w;

}

printf("\n\nCost of the spanning tree=%d",cost);

Prim vs Kruskal
B

It starts to build the Minimum Span-

ning Tree from any vertex in the graph.

It traverses one node more than one

time to get the minimum distance.

Prim’s algorithm has a time complexity

of O(V*2), V being the number of ver-

tices.

Prim’s algorithm gives connected com-
ponent as well as it works only on con-

nected graph.

Prim’s algorithm runs faster in dense

graphs.

It starts to build the Minimum Span-
ning Tree from the vertex carrying mini-

mum weight in the graph.

It traverses one node only once.

Kruskal’s algorithm’s time complexity
is O(logV), V being the number of ver-

tices.

Kruskal’s algorithm can generate for-
est(disconnected components) at any
instant as well as it can work on dis-

connected components

Kruskal’s algorithm runs faster in

sparse graphs.

