Data Structures and
Algorithms

Pattern

’roblem Domain

Search Applications

App 1cation

Bioinformatics

nput Pattern

Sequence Analysis

Pattern Class

DNA/Protein sequence

Known type of
genes/patterns

Data mining

Searching for
meaningful patterns

Points in multi
dimension space

Compact and well
separated clusters

Document
classification

Internet search

Text document

Semantic categories

Document image
analysis

Reading machine for

the blind

Document image

Alphanumeric
characters / words

Industrial automation

Printed circuit board
inspection

[ntensity or range
Image

Defective / non
defective nature of
product

Multimedia database
retrieval

Internet search

Video clip

Video genres e.g.
action, dialogue etc

Biometric recognition

Personal
identification

Face, iris & finger
print

Authorized user for
access control

Remote sensing

Forecasting crop
yield

Multispectral image

Land use categories,
growth pattern of
Crops

Speech recognition

Telephone
directory enquiry
with operator

Speech waveform

Spoken words

Exact pattern matching

Problem:
Find first match of a pattern of length M in a text stream of length N.
)
pattern typically N >> M

n e e d 1 e M=6

text
i n a h ay s t a ¢ k a n e e d 1 e i n a N=12I

Applications.

e parsers.

e spam filters.

e digital libraries.

® screen scrapers.

e word processors.

e web search engines.

e natural language processing.

e computational molecular biology.

* feature detection in digitized images.

String Matching Problem

» Given a text 7' and a pattern P, find all occurrences of P
within 7T’
Notations:
— n and m: lengths of P and T’
— Y. set of alphabets (of constant size)
— P;: ith letter of P (1-indexed)
— a, b, c: single letters in X
- x, Yy, 2. strings

Brute-force exact pattern match

Check for pattern starting at each text position.

h a vy e e d s

n e d 1 e
n e = d 1 e

n = = d 1 e

n e e d 1

n e e d

n e e

n e

n

public static int search(String pattern, String text)

{
int M = pattern.length();
int N = text.length();

for (int 1 = 0; i < N - M; i++)
{

int j;
for (j = 0; j < M; j++)
if (text.charAt(i+j) '= pattern.charAt(j))
break;
if (j == M) return i; €«— pqgttern start index in text

}
return -1; €<— not found

R = 0

Q. = 0

®

Q. =

®

R H+

®

QR

1" = AGCATGCTGCAGTCATGCTTAGGCTA
P = GCT

P appears three times in T

A naive method takes O(mn) time

— Initiate string comparison at every starting point
— Each comparison takes O(m) time

We can do much better!

Brute-force substring search

Check for pattern starting at each text position.

1 j 1+ 0 1 2 3 4 5 6 7 8 910
txt—A B A C A D A B R A C

0 2 2 A B R <~ pat

1 0 1 A entries in red are

7 1 3 A B / mismatches

3 0 3 A entries in gray are

for reference only

+ L > entries in black A B el

5 0 > match the text A

6 4 10 A B R A

™ return i when j is M 4

match

11

Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

1 J 147 O 1 2 3 4 5 6 7 8 9
txt— A A A A A A A A A B

0 4 4 A A A A B <«~—pat

1 4 5 A A A A B

2 4 6 A A A A B

3 4 / A A A A B

4 4 8 A A A A B

5 5 10 A A A A B
}
match

Worst case. ~M N char compares.

13

Boyer-\Moore

Boyer-Moore Algorithm

d Sy

* Bad symbol Shift

TR
Gl y
ey g : : ‘ ! | :
gt ; 3 : . e i |
7 A e il : o :) : l |
s % ot o & . A 0%) : » ‘
R i i ; L
: : DA A e
7 SRR 2 2 lﬂ%"%'k.
NS

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 1. Mismatch character not in pattern.

before l
txt T
pat D
[
after l
txt T L E
pat N E E D L E

mismatch character 'T' not in pattern: increment i one character beyond 'T’

38

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2a. Mismatch character in pattern.

before l
txt N
pat D L
[
after l
txt N
pat N E D L E

mismatch character 'N' in pattern: align text 'N' with rightmost pattern 'N'

39

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

before l
txt
pat
[
aligned with rightmost E? l
txt E L E
pat N E E D L E

mismatch character 'E' in pattern: align text 'E' with rightmost pattern 'E' ?

40

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

before l
txt E
pat
i
after l
txt E L E
pat N E E D L E

mismatch character 'E' in pattern: incrementi by 1

4]

Bad-Symbol Shift

t1(S) —2=6-2=4

tHA) —2=4—-2=2

d; = max{t(c) — k, 1}.

Good Suffix Shift

pattern d,

ABCBAB 2
ABCBAB 4

ABCBAB
ABCBAB
ABCBAB
ABCBAB
ABCBARB

The Boyer-Moore algorithm

Step 1 For a given pattern and the alphabet used in both the pattern and the
text, construct the bad-symbol shift table as described earlier.

Step 2 Using the pattern, construct the good-suffix shift table as described
earlier.

Step 3 Align the pattern against the beginning of the text.

Step 4 Repeat the following step until either a matching substring is found or
the pattern reaches beyond the last character of the text. Starting with
the last character in the pattern, compare the corresponding characters
in the pattern and the text until either all m character pairs are matched
(then stop) or a mismatching pair is encountered after k > 0 character
pairs are matched successfully. In the latter case, retrieve the entry
t1(c) from the ¢’s column of the bad-symbol table where c is the text’s
mismatched character. If k > 0, also retrieve the corresponding d,
entry from the good-suffix table. Shift the pattern to the right by the

Space and Time Trade-Offs

number of positions computed by the formula

max{dl, dz} if k > O,

where d; = max{t;(c) — k, 1}.

Boyer-\Voore Horspool

Case 1 If there are no ¢’s in the pattern—e.g., c is letter S in our example—
we can safely shift the pattern by its entire length (if we shift less, some character
of the pattern would be aligned against the text’s character ¢ that is known not to
be in the pattern):

S0

S
K
R

B ARBE
B ARBER

Case 2 Ifthere are occurrences of character c in the pattern but it is not the last
one there—e.g., c is letter B in our example—the shift should align the rightmost
occurrence of ¢ in the pattern with the c in the text:

Case 3 If c happens to be the last character in the pattern but there are no ¢’s
among its other m — 1 characters—e.g., c is letter R in our example—the situation
is similar to that of Case 1 and the pattern should be shifted by the entire pattern’s
length m:

LEADER

Case 4 Finally, if ¢ happens to be the last character in the pattern and there
are other ¢’s among its first m — 1 characters—e.g., c is letter R in our example—
the situation is similar to that of Case 2 and the rightmost occurrence of ¢ among
the first m — 1 characters in the pattern should be aligned with the text’s c:

Sp—1

the pattern’s length m,
if ¢ 1s not among the first m — 1 characters of the pattern;
(7.1)
the distance from the rightmost ¢ among the first m — 1 characters
of the pattern to its last character, otherwise.

EXAMPLE As an example of a complete application of Horspool’s algorithm,
consider searching for the pattern BARBER 1n a text that comprises English letters
and spaces (denoted by underscores). The shift table, as we mentioned, is filled as

follows:

character ¢

shift 7 (¢)

The actual search in a particular text proceeds as follows:

M _ ARBERSHOP
R B

J I
B A

Horspool Algorithm

Preprocessing

ALGORITHM ShiftTable(P[0..m — 1])

//Fills the shift table used by Horspool’s and Boyer-Moore algorithms
//Input: Pattern P[0..m — 1] and an alphabet of possible characters
//Output: Table[0..size — 1] indexed by the alphabet’s characters and

/] filled with shift sizes computed by formula (7.1)
fori <— 0tosize —1do Table[i] < m

for j < Otom —2do Table[P[j]]«m—1—

return 7able

Horspool Algorithm

ALGORITHM HorspoolMatching(P[0..m — 1], T[0..n — 1])
/Implements Horspool’s algorithm for string matching
//Input: Pattern P[0..m — 1] and text T[0..n — 1]

//Output: The index of the left end of the first matching substring
/1 or —1 if there are no matches

ShiftTable(P[0..m — 1]) //generate Table of shifts

i< m-—1 //position of the pattern’s right end
whilei <n —1do

k<0 //mumber of matched characters
while k <m —land P[m —1—k]=T[i — k] do
k<k+1
ifk=m
return: —m +1
else i < i + Table[T|i]]
return —1

Rabin-Karp Algori

Rabin-Karp fingerprint search

Basic idea = modular hashing.
« Compute a hash of pat[0..M-1].
o For each i, compute a hash of txt[i..M+i-1].
 If pattern hash = text substring hash, check for a match.

pat.charAt(i)
0O 1 2 3 4

2 6 5 3 5 %997 = 613

txt.charAt(i)
5 6 7 8 910 11 12 13 14 15
9 2 6 5 3 5 8 9 7 9 3

% 997 = 508
9 % 997 = 201
2 % 997 = 715
6 % 997 = 971
6 5 % 997 = 442
6 5 3 % 997 = 929 ff“h
6 5 3 5 % 997 = 613

2
2
2
2

<~ returni = 6

modular hashing with R = 10 and hash(s) = s (mod 997)

[T

Rabin-Karp Algorithm

Rabin-Karp

e The Rabin-Karp string searching algorithm
calculates a hash value for the pattern, and for each
M-character subsequence of text to be compared.

e If the hash values are unequal, the algorithm will
calculate the hash value for next M-character
sequence.

e If the hash values are equal, the algorithm will do a
Brute Force comparison between the pattern and the
M-character sequence.

e In this way, there is only one comparison per text
subsequence, and Brute Force is only needed when
hash values match.

 Perhaps a figure will clarify some things...

Modular arithmetic

Math trick. To keep numbers small, take intermediate results modulo O.

EX. (10000 + 535) * 1000 (mod 997)
= (30+535)*3 (mod 997)
= 1695 (mod 997)

= 698 (mod 997)

(a+b)mod O = ((amod Q) + (b mod O)) mod O

(a*b)mod O = ((amod Q) * (b mod Q)) mod O

two useful modular arithmetic identities

Efficiently computing the hash function

Modular hash function. Using the notation # for txt.charAt(i),
we wish to compute

Xi = t;RM-1 + ;.1 RM2 + | + tizp—1 RO (mod Q)

Intuition. M-digit, base-R integer, modulo Q.

Horner's method. Linear-time method to evaluate degree-M polynomial.

pat.charAt() // Compute hash for M-digit key
i 01 2 3 4 private Tong hash(String key, int M)
2 6 5 3 5 {
0 2 %997 =2 Va N Tong h = 0;
1 2 6 %997 = (2*10 + 6) % 997 = 26 for (int J = 0: J < M; j++)
2 2 6 5 %997 = (26%10 + 5) % 997 = 265 h = (h * R+ key.charAt(j)) % Q;
3 2 6 5 3 %997 = (265%10 + 3) % 997 = 659 return h;
4 2 6 5 3 5 %997 = (659*10 + 5) % 997 = 613 }

26535 = 2*10000 + 6*1000 + 5*100 + 3*10 + 5
= ((((2) *10 +6) *10 + 5)*10 + 3) *10 + 5

48

Efficiently computing the hash function

Challenge. How to efficiently compute x;.; given that we know x;.

Key property.

xi =LtRM1 4+ 1 RM2 4+ | .+ tivp1 RO

Xi+1 = ti+1 R M-1 + ti+2 R M-2 W coo ti+M RO

Can update "rolling" hash function in constant time!

Xi+1 = (xi — l‘iRM_l) R + li+Mm
current subtract multiply add new

value leading digit by radix trailing digit

i ... 2 3 4 5 6 7
current value 4 1 9 2
text
new value 1 5 9 2 6 = tex
4 1 5 9 2 currentvalue
- 4 0 0 0 O
1 5 9 2 subtractleading digit
* 1 0 multiply by radix
1 5 9 2 0
+ 6 addnew trailing digit
1 5 9 2 6 newvalue

(can precompute RM-1)

49

Exact pattern match cost summary

Cost of searching for M-character pattern in N-character text

algorithm worst-case

M N char compares

brute-force 1.1 N char compares 1
Karp-Rabin 3N arithmetic ops 3N arithmetic ops *
KMP 1.1 N char compares * 2N char compares

Boyer-Moore ~ N/M char compares * 3N char compares

t assumes appropriate model
¥ randomized

24

Substring search cost summary

Cost of searching for an M-character pattern in an N-character text.

operation count

algorithm version .ba.ckup correct? extra
guarantee typical Ininput? LSS
brute force — MN 1.1N yes yes 1
full DFA
(Algorithm 5.6) 2N 1.1N no yes MR
Knuth-Morris-Pratt .
e match 3N 1.IN no yes M
transitions only
ull algorithm 3N N/M es es R
full alg y y
Boyer-Moore mismatched char
heuristic only MN N/M yes yes R
(Algorithm 5.7)
Monte Carlo
."-
(Algorithm 5.8) TN 7N 1o yes !
Rabin-Karp®
Las Vegas 7NT 7N yes yes 1

t probabilisitic guarantee, with uniform hash function

55

Performance Comparison of some String Matching
Algorithms

Shift-Or

.. Simplified-Boyer-Moore

-

-

Boyer-Moore

Boyer-Moore-Horspool

2 3 45 6 7 8 9 101112131415 16 17 1819 20
Length of the Pattern (m)

