
Introduction to Mobile Programming

Android Programming Chapter 1

Build Your First App
❖ Apps provide multiple entry points

❖ Components

❖ Activity, BroadcastReceivers, Services, …

❖ App Icon, Different Activity, Notification, Different App

❖ Apps adapt to different devices

❖ Different layouts for different screen sizes

❖ Specific hardware

Application Fundamentals

❖ Kotlin, Java, C++

❖ Code and resource files are compiled into APK

❖ APK - an archive file, an Android Package

❖ One APK file contains all the contents of an Android
app and is the file that Android-powered devices use
to install the app

Application Fundamentals

❖ Each Android app lives in its own security sandbox

❖ Each process has its own virtual machine (VM), so an
app's code runs in isolation from other apps.

❖ The Android system implements the principle of least
privilege.

Android Programming

App Components
• App components are the essential building

blocks of an Android app.

• Essential Building Blocks
• Activities
• Services
• Broadcast Receivers
• Content Providers

• AndroidManifest file

• App Resources

Android Programming

Activities

• An activity is the entry point for
interacting with the user.

• It represents a single screen with a
user interface.

• An e-mail app

Android Programming

Services

It is a component that runs in the background to
perform long-running operations or to perform
work for remote processes.

A service does not provide a user interface

The service may allow the system to be killed
(and then restarting the service sometime later) if
it needs RAM for things that are of more
immediate concern to the user.

Android Programming

Broadcast Receivers
• A broadcast receiver is a component that enables the system

to deliver events to the app outside of a regular user flow,
allowing the app to respond to system-wide broadcast
announcements

• Many broadcasts originate from the system.

• Apps can also initiate broadcasts.

• Although broadcast receivers don't display a user
interface, they may create a status bar notification to alert
the user when a broadcast event occurs

https://developer.android.com/guide/topics/ui/notifiers/notifications.html

Android Programming

Content Providers
• A content provider manages a shared set of app

data that you can store in the file system, in a
SQLite database, on the web, or on any other
persistent storage location that your app can
access.

• Any app with the proper permissions can
query the content provider

Android Programming

Intents - Activating
Components
• Three of the four component types—activities,

services, and broadcast receivers—are
activated by an asynchronous message called
an intent.

• An intent defines the action to perform (for
example, to view or send something) and may
specify the URI of the data to act on, among
other things that the component being started
might need to know.

Android Programming

The Manifest File
• AndroidManifest.xml
• Your app must declare all its components in

this file, which must be at the root of the app
project directory

• Identifies any user permissions the app
requires

• Declares the minimum API Level required by
the app

• Declares hardware and software features used
or required by the app

• Declares API libraries the app needs to be
linked against

https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest ... >
 <application android:icon="@drawable/app_icon.png" ... >
 <activity android:name="com.example.project.ExampleActivity"
 android:label="@string/example_label" ... >
 </activity>
 ...
 </application>
</manifest>

<manifest ... >
 ...
 <application ... >
 <activity android:name="com.example.project.ComposeEmailActivity">
 <intent-filter>
 <action android:name="android.intent.action.SEND" />
 <data android:type="*/*" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 </application>
</manifest>

<manifest ... >
 <uses-feature android:name="android.hardware.camera.any"
 android:required="true" />
 <uses-sdk android:minSdkVersion="7" android:targetSdkVersion="19" />
 ...
</manifest>

Android Programming

App Resources

• Resources are the additional files and static
content that your code uses, such as
bitmaps, layout definitions, user interface
strings, animation instructions, and more.

App Resources
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hello</string>
 <string name="hi">@string/hello</string>
</resources>

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="red">#f00</color>
 <color name="highlight">@color/red</color>
</resources>

<Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/submit" />

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:textColor="@color/opaque_red"
 android:text="@string/hello" />

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:textColor="@android:color/secondary_text_dark"
 android:text="@string/hello" />

MyProject/
 src/
 MyActivity.java
 res/
 drawable/
 graphic.png
 layout/
 main.xml
 info.xml
 mipmap/
 icon.png
 values/
 strings.xml

<ImageView
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:src="@drawable/myimage" />

Android Programming

Device Configuration
Changes

• Some device configurations can change
during runtime (such as screen orientation,
keyboard availability, and when the user
enables multi-window mode).

• onSaveInstanceState()

https://developer.android.com/guide/topics/ui/multi-window.html
https://developer.android.com/reference/android/app/Activity#onsaveinstancestate

Android Programming

App Permissions
 Permission Approval

• Android apps must request permission to
access sensitive user data (such as contacts
and SMS), as well as certain system
features (such as camera and internet)

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.snazzyapp">

 <uses-permission android:name="android.permission.SEND_SMS"/>

 <application ...>
 ...
 </application>
</manifest>

Android Programming

App Permissions

• Normal Permissions
• permissions that don't pose much

risk to the user's privacy or the
device's operation

• Dangerous Permissions
• permissions that could potentially

affect the user's privacy or the
device's normal operation

Android Programming

Runtime Requests

• If the device is running Android 6.0 (API
level 23) or higher, and the app's targetSdkVersion
is 23 or higher, the user isn't notified of any
app permissions at install time.

• Your app must ask the user to grant the
dangerous permissions at runtime.

•

https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#target

Android Programming

Install-time Requests

• If the device is running Android 5.1.1 (API
level 22) or lower, or the app's targetSdkVersion is
22 or lower while running on any version
of Android, the system automatically asks
the user to grant all dangerous permissions
for your app at install-time

•

https://developer.android.com/guide/topics/manifest/uses-sdk-element.html#target

Android Programming

Permissions for Optional
Hardware Features

• Access to some hardware features (such as
Bluetooth or the camera) require an app
permission. However, not all Android
devices actually have these hardware
features.

<uses-feature android:name="android.hardware.camera" android:required="false" />

Android Programming

Normal Permissions

• As of Android 9 (API level 28), the
following permissions are classified as
PROTECTION_NORMAL

https://developer.android.com/reference/android/content/pm/PermissionInfo.html

Android Programming

Signature Permissions

• The system grants these app permissions
at install time, but only when the app that
attempts to use a permission is signed by
the same certificate as the app that defines
the permission.

Android Programming

Dangerous Permissions

•

Android Programming

Request App Permissions

• Add permissions to the manifest

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.snazzyapp">

 <uses-permission android:name="android.permission.INTERNET"/>
 <!-- other permissions go here -->

 <application ...>
 ...
 </application>
</manifest>

• Check for permissions
• If your app needs a dangerous permission,

you must check whether you have that
permission every time you perform an
operation that requires that permission.

• ContextCompat.checkSelfPermission()
• PERMISSION_GRANTED
• PERMISSION_DENIED

• requestPermissions()

Android Programming

Create an Android
Project
-Android Studio
-Create New Project
-Application Name
-Company Domain
-Empty Activity
-MainActivity
-Layout file
-AndroidManifest.xml
-Gradle Scripts > build.gradle

Android Programming

Run Your App

- Run on a real device
 Enable USB debugging in the Developer options

- Run on an emulator
 Create New Virtual Device

Android Programming

Build a simple user
interface
- The user interface for an Android app is
built using a hierarchy of
 -layouts
 -widgets

- Open the Layout Editor
 - Select an Layout
 - Add a text box
 - Add a button
 - Change the UI strings

