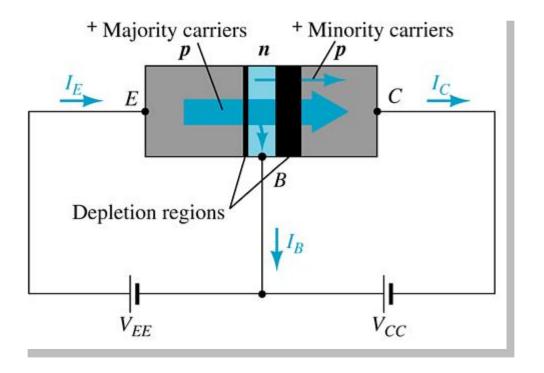

Transistor Construction

There are two types of transistors:

- pnp
- npn

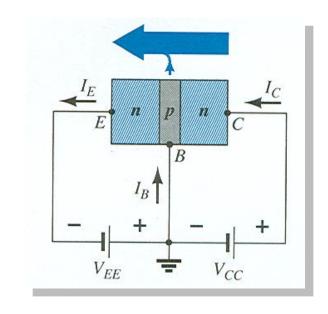
The terminals are labeled:


- E Emitter
 - B Base
- C Collector

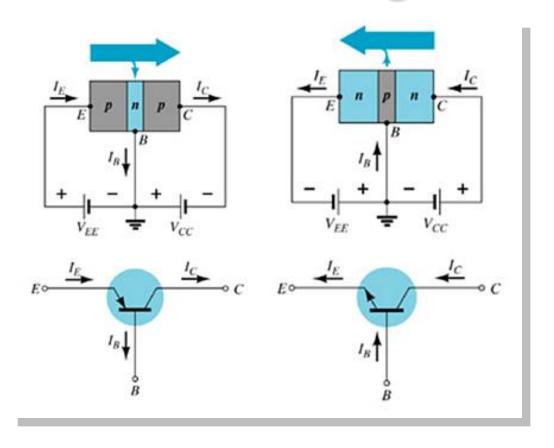
Transistor Operation

With the external sources, V_{EE} and V_{CC} , connected as shown:

- The emitter-base junction is forward biased
- The base-collector junction is reverse biased


Currents in a Transistor

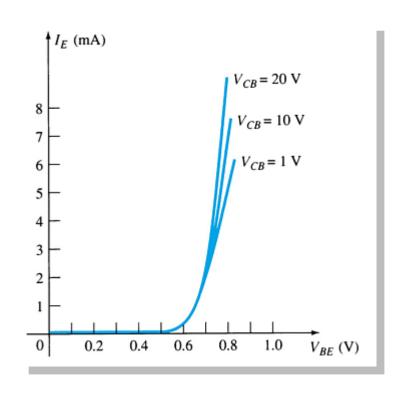
Emitter current is the sum of the collector and base currents:


$$I_E = I_C + I_B$$

The collector current is comprised of two currents:

$$I_C = I_{C}$$
 majority $+ I_{CO}$ minority

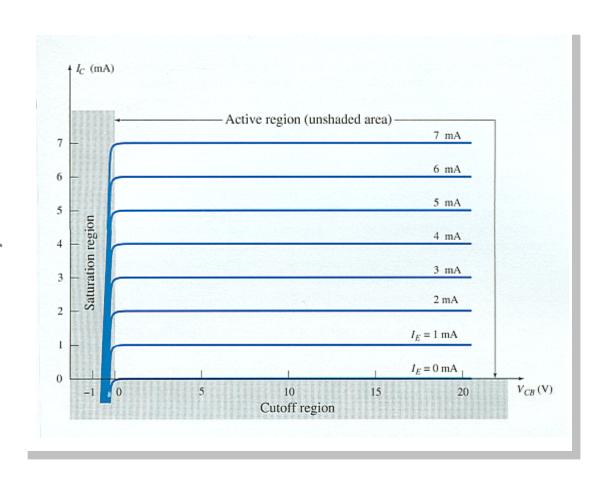
Common-Base Configuration



The base is common to both input (emitter-base) and output (collector-base) of the transistor.

Common-Base Amplifier

Input Characteristics


This curve shows the relationship between of input current (I_E) to input voltage (V_{CB}) for three output voltage (V_{CB}) levels.

Common-Base Amplifier

Output Characteristics

This graph demonstrates the output current (I_C) to an output voltage (V_{CB}) for various levels of input current (I_E) .

Operating Regions

- Active Operating range of the amplifier.
- Cutoff The amplifier is basically off. There is voltage, but little current.
- Saturation The amplifier is full on. There is current, but little voltage.

Approximations

Emitter and collector currents:

$$I_C \cong I_E$$

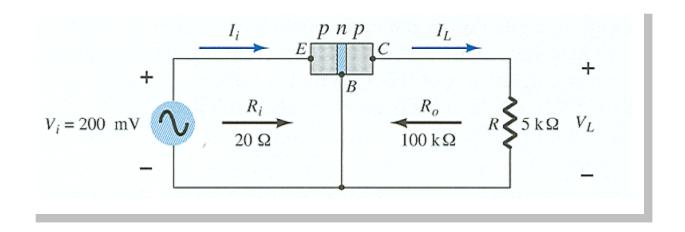
Base-emitter voltage:

$$V_{\mbox{\footnotesize BE}}=0.7\, V \ \ (\mbox{for Silicon})$$

Alpha (α)

Alpha (α) is the ratio of I_C to I_E :

$$\alpha_{\mathbf{dc}} = \frac{I_C}{I_E}$$


Ideally: $\alpha = 1$

In reality: α is between 0.9 and 0.998

Alpha (α) in the AC mode:

$$\alpha_{ac} = \frac{\Delta I_C}{\Delta I_E}$$

Transistor Amplification

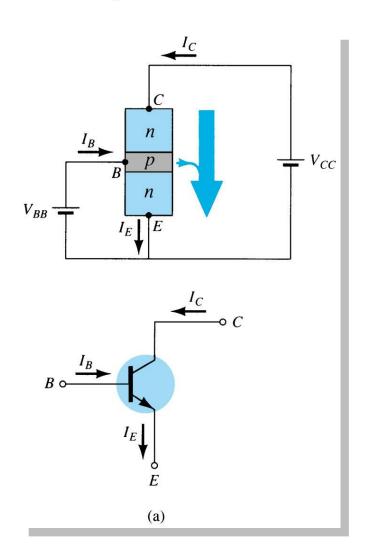
Currents and Voltages:

$$I_E = I_i = \frac{V_i}{R_i} = \frac{200 \text{mV}}{20\Omega} = 10 \text{mA}$$

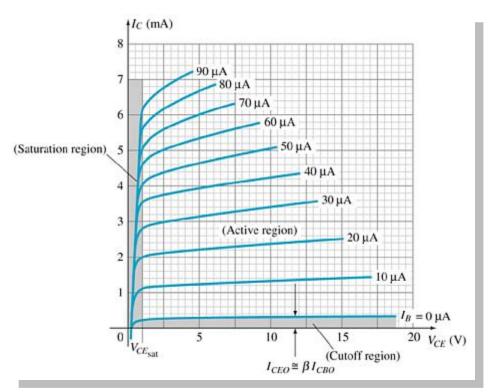
$$I_C \cong I_E$$

$$I_L \cong I_i = 10 \,\mathrm{mA}$$

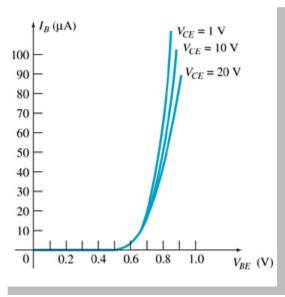
$$V_L = I_L R = (10 \,\mathrm{ma})(5 \,\mathrm{k}\Omega) = 50 \,\mathrm{V}$$


Voltage Gain:

$$A_{V} = \frac{V_{L}}{V_{i}} = \frac{50V}{200mV} = 250$$


Common-Emitter Configuration

The emitter is common to both input (base-emitter) and output (collector-emitter).


The input is on the base and the output is on the collector.

Common-Emitter Characteristics

Collector Characteristics

Base Characteristics

Common-Emitter Amplifier Currents

Ideal Currents

$$I_E = I_C + I_B$$

$$I_C = \alpha I_E$$

Actual Currents

$$I_C = \alpha I_E + I_{CBO}$$

where I_{CBO} = minority collector current

I_{CBO} is usually so small that it can be ignored, except in high power transistors and in high temperature environments.

When $I_B = 0$ μA the transistor is in cutoff, but there is some minority current flowing called I_{CEO} .

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha} \Big|_{I_B = 0 \, \mu A}$$

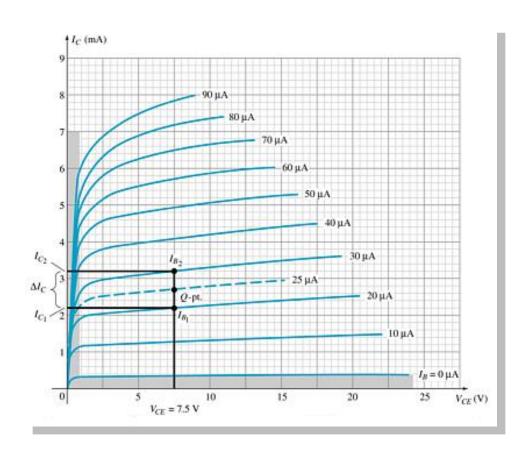
Beta (B)

eta represents the amplification factor of a transistor. (eta is sometimes referred to as h_{fe} , a term used in transistor modeling calculations)

In DC mode:

$$\beta_{
m dc} = \frac{I_C}{I_B}$$

In AC mode:


$$\beta_{\rm ac} = \frac{\Delta I_C}{\Delta I_B}\Big|_{V_{CE} = \text{constant}}$$

Beta (β)

Determining β from a Graph

$$\beta_{AC} = \frac{(3.2 \,\text{mA} - 2.2 \,\text{mA})}{(30 \,\mu\text{A} - 20 \,\mu\text{A})}$$
$$= \frac{1 \,\text{mA}}{10 \,\mu\text{A}} \Big|_{V_{CE} = 7.5}$$
$$= 100$$

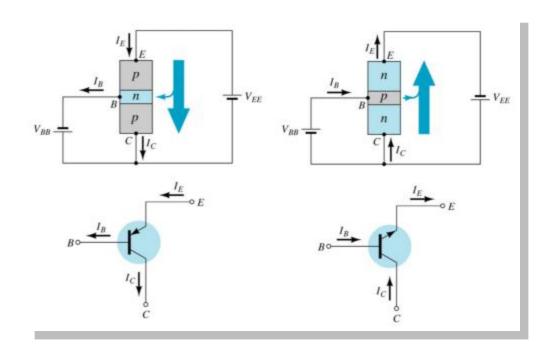
$$\beta_{DC} = \frac{2.7 \text{ mA}}{25 \,\mu\text{A}} \Big|_{V_{CE} = 7.5}$$
$$= 108$$

Beta (β)

Relationship between amplification factors β and α

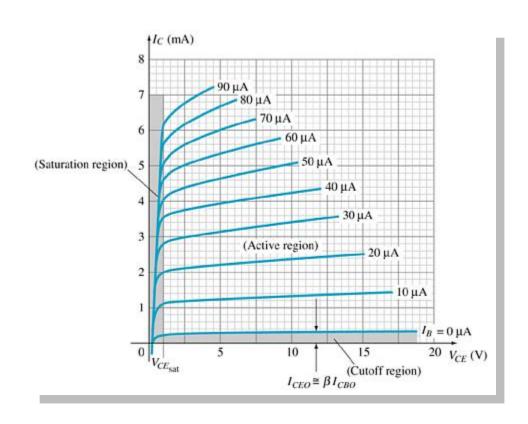
$$\alpha = \frac{\beta}{\beta + 1} \qquad \beta = \frac{\alpha}{\alpha - 1}$$

$$\beta = \frac{\alpha}{\alpha - 1}$$


Relationship Between Currents

$$I_C = \beta I_B$$

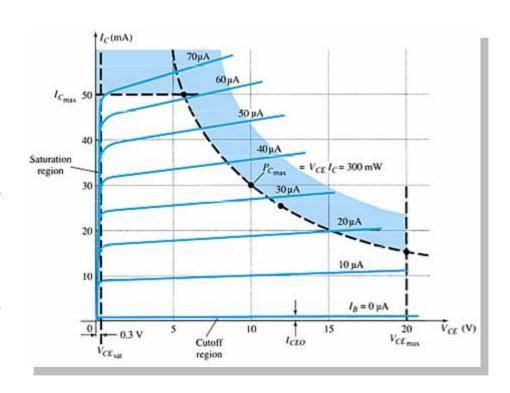
$$I_C = \beta I_B$$
 $I_E = (\beta + 1)I_B$


Common-Collector Configuration

The input is on the base and the output is on the emitter.

Common-Collector Configuration

The characteristics are similar to those of the common-emitter configuration, except the vertical axis is $I_{\rm E}$.



Operating Limits for Each Configuration

 V_{CE} is at maximum and I_{C} is at minimum $(I_{Cmax} \!\!= I_{CEO})$ in the cutoff region.

 I_{C} is at maximum and V_{CE} is at minimum ($V_{CE\;max} = V_{CEsat} = V_{CEO}$) in the saturation region.

The transistor operates in the active region between saturation and cutoff.

Power Dissipation

Common-base:

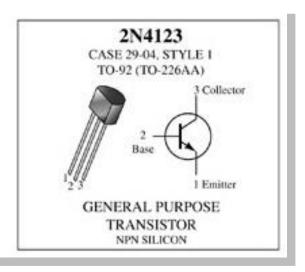
$$P_{\text{Cmax}} = V_{\text{CB}}I_{\text{C}}$$

Common-emitter:

$$P_{\text{Cmax}} = V_{\text{CE}}I_{\text{C}}$$

Common-collector:

$$P_{\text{Cmax}} = V_{\text{CE}}I_{\text{E}}$$


Transistor Specification Sheet

MAXIMUM RATINGS

Rating	Symbol	2N4123	Unit
Collector-Emitter Voltage	VCED	30	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current - Continuous	Ie.	200	mAde
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW*C
Operating and Storage Junction Temperature Range	T _j ,T _{stg}	-55 to +150	°C

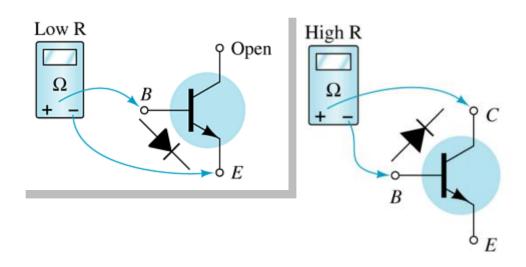
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit °C W	
Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient	Ride	83.3		
	R _{ista}	200	°C W	

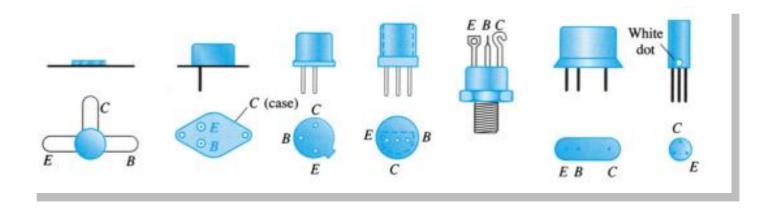
Transistor Specification Sheet

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	11 m 1925—19			
Collector-Emitter Breakdown Voltage (1) $(I_C = 1.0 \text{ mAde}, I_E = 0)$	V _(BRCD)	30		Vde
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	V _{(BR)CBO}	40		Vde
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	V _{(BR)EBO}	5.0	5	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	Icao	-	50	nAde
Emitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	50	nAde
ON CHARACTERISTICS				V.
DC Current Gain(1) $(I_C = 2.0 \text{ mAde}, V_{CE} = 1.0 \text{ Vde})$ $(I_C = 50 \text{ mAde}, V_{CE} = 1.0 \text{ Vde})$	hex	50 25	150	PE
Collector-Emitter Saturation Voltage(1) (I _C = 50 mAde, I _B = 5.0 mAde)	Vctisati	-	0.3	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 50 \text{ mAde}, I_B = 5.0 \text{ mAde}$)	V _{RE(sat)}	-	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·		192	
Current-Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f _T	250		MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 100 \text{ MHz})$	Cobo	-	4.0	pF
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz})$	Ceso	-	8.0	pF
Collector-Base Capacitance ($I_E = 0$, $V_{CB} = 5.0$ V, $f = 100$ kHz)	Ccs	-	4.0	pF
Small-Signal Current Gain ($I_C = 2.0 \text{ mAde}$, $V_{CE} = 10 \text{ Vde}$, $f = 1.0 \text{ kHz}$)	h _b	50	200	-
Current Gain – High Frequency ($I_C = 10 \text{ mAdc}$, $V_{CL} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$) ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 10 \text{ V}$, $f = 1.0 \text{ kHz}$)	h _{ie}	2.5 50	200	-
Noise Figure $(I_C = 100 \mu Adc, V_{CE} = 5.0 \text{ Vdc}, R_S = 1.0 \text{ k ohm}, f = 1.0 \text{ kHz})$	NF	-	6.0	dB

Transistor Testing


Curve Tracer

Provides a graph of the characteristic curves.


DMM

Some DMMs measure β_{DC} or h_{FE} .

Ohmmeter

Transistor Terminal Identification

