12/17/2021

ISLETIM SISTEMLERI
UYGULAMA

Semaphores

* Asemaphore is a data structure that is shared by
several processes.

Semaphores are most often used to synchronize
operations, when multiple processes access a
common, non-shareable resource.

By using semaphores, we attempt to avoid other
multi-programming problems such as:

¢ Starvation
* Deadlock

12/17/2021

Starvation & Deadlock

Ry

— [. '
1 & @
@, . | h
NN * 5
(a) Deadlock possible (b) Deadlock

POSIX Semaphores

O POSIX semaphores allow processes and
threads to synchronize their actions.

o A semaphore is an integer whose value
is never allowed to fall below zero.

e __]—> proses

named semaphores

O POSIX semaphores

. unnamed
come in two forms:

semaphores.

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

12/17/2021

Named Semaphores

* A named semaphore is identified by a name of the form /somename;
that is, a null-terminated string

* Two processes can operate on the same named semaphore by passing
the same name to sem_open().

* Named semaphore functions
* sem_open()
* sem_post()
* sem_wait(), sem_timedwait(), sem_trywait()
* sem_close()
* sem_unlink()

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

Unnamed Semaphores

* An unnamed semaphore does not have a name.
* The semaphore is placed in a region of memory that is shared between
multiple threads or processes.
* A thread-shared semaphore
* a global variable.

* A process-shared semaphore

* must be placed in a shared memory region
* POSIX or System V shared memory segment

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

12/17/2021

Unnamed Semaphores

* Unnamed semaphore functions
* sem_init()
* sem_post()
* sem_wait(), sem_timedwait(), sem_trywait()
* sem_destroy()

12 Teknik Universitesi - Bilgisayar Mihendisliji Bolimii

A simple semaphore example

//create & initialize existing semaphore

//create & initialize semaphore mutex = sem open(SEM NAME,G,0644,0);
T:‘Etext= SEM'gg:néiirgg?MEiu’CREAT'0644'”; if(mutex == SEM FAILED) {
& m:e?-);nrf“ i e SR R perror("reader:unable to execute semaphore");
unable T reate s [+] H
! 1 tex);

sem_unlink(SEM NAME); Semi?q??(mu ex)

exit(-1); - exi ;
while(i<10) { while{i<18) {

sem_wait(mutex); sem wait(mutex);

t = time(&t); t = time(&t);
printf("Process A enters the critical section at %d \n",t); printf({"Process B enters the critical section at %d \n",t);
t = time(&t); t = time(&t);
printf("Process A leaves the critical section at %d \n",t); printf("Process B leaves the critical section at %d \n",t);
sem_post(mutex); sem_post(mutex);
i++; 1++]
sleep(3); sleep(2);
}

sem_close(mutex);

sem_unlink(SEM_NAME); sem_close(mutex); EX SemA.C

lucid@ubuntu =
enters critical 6420556
: Ex _semB.c
3 critical i e o
critical i 1 64 =
it At s 5 2 @ lucid@ubuntu: ~
(r;tl(a} S i 13 File Edit View Terminal Help
e =t Lucid@ubuntu - /PA
critical 5
|Process A the critical section a
critical = ™ i
Process A the 18 ction
critical
A the section
crEfEreat A the section
SEIETcal A the 1 ction
A :
A
A
A

crlticat the critical

the critical
the critical section
the critical section a

critical
critical

critical
= Process

z Teknik Oniversitesi - Bilgisayar Mihendislifi Bolimii

12/17/2021

Message Queues

Producer Message Queue

Consumers

* Unlike pipes and FIFOs,
message queues support messages that have structure.

* Like FIFOs, message queues are persistent objects that must be initially
created and eventually deleted when no longer required.

* Message queues are created with a specified maximum message size and
maximum number of messages.

* Message queues are created and opened using a special version of the open
system call, mq_open.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

POSIX Message Queue Functions

* mg_open() * mg_receive()
* mg_close() * mg_setattr()
* mq_unlink() * mq_getattr()
* mq_send() * mq_notify()

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

10

12/17/2021

* name

* oflag

mq_open(const char *name, int oflag,...)

* Must start with a slash and contain no other slashes
* QNX puts these in the /dev/mqueue directory

* O_CREAT - to create a new message queue
* O_EXCL — causes creation to fail if queue exists
* O_NONBLOCK — usual interpretation

* mode — usual interpretation
* &maqattr — address of structure used during creation

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

11

mq_attr structure

struct mg_attr {
long mg_flags;
long mg_maxmsg;
long mg_msgsize;
long mg_curmsgs;

* This structure, pointed to by the last argument of mq_open, has at
least the following members:

/* Flags: @ or O_NONBLOCK */

/* Max. # of messages on queue */

/* Max. message size (bytes) */

/* # of messages currently in queue */

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

12

12/17/2021

mq_close(magd_t mqgdes)

* This function is used to close a message queue after it has been used.

* As noted earlier, the message queue is not deleted by this call; it is
persistent.

* The message queue’s contents are not altered by mq_close unless a
prior call(by this or another process) called mq_unlink (see next
slide). In this respect, an open message queue is just like an open file:
deletion is deferred until all open instances are closed.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

13

maq_unlink(const char *name)

* This call is used to remove a message queue.

* Recall (from the previous slide) that the deletion is deferred until all
processes that have the message queue open have closed it (or
terminated).

* |t is usually a good practice to call mg_unlink immediately after all
processes that wish to communicate using the message queue have
opened it. In this way, as soon as the last process terminates (closing
the message queue), the queue itself is deleted.

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

14

12/17/2021

Message Queue Persistence - |

* As noted, a message queue is persistent.

* Unlike a FIFO, however, the contents of a message queue are also
persistent.

* |t is not necessary for a reader and a writer to have the message
queue open at the same time. A writer can open (or create) a queue
and write messages to it, then close it and terminate.

* Later a reader can open the queue and read the messages.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

15

mg_send(mqd_t mqgdes, const char *msq_ptr, size_t msglen,
unsigned msg_prio)

* mqdes
* the descriptor required by mg_open
* msg_ptr
* pointer to a char array containing the message
* msglen
* number of bytes in the message; this must be no larger than the maximum
message size for the queue
* prio
* the message priority (0..MQ_PRIO_MAX); messages with larger (higher)
priority leap ahead of messages with lower (smaller) priority

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

16

12/17/2021

mq_receive(mqgd_t mqgdes, char *msqg_ptr, size_t
msglen, unsigned *msg_prio)

* mqdes

* the descriptor returned by mqg_open
* msg_ptr

* pointer to a char array to receive the message
* msglen

* number of bytes in the msg buffer; this should normally be equal to the
maximum message size specified when the message queue was created

* msg_prio
* pointer to a variable that will receive the message’s priority
* The call returns the size of the message, or -1

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

17

A simple Message Queue Example
Sender

/* forcing specification of "-i" argument */

if (msgprio = @) {
printf("Usage: %5 [-q] -p msg prio\n", argv([@]);
exit(1);

}

/* opening the queue -- mqg_open() */
if (create queue) {
msgq_id = mq_open(MSGQOB] NAME, O RDWR | O CREAT | O EXCL, S IRWXU | S IRWXG, NULL);

} else {
: ;qu_id = mq_open(MSGQOBI NAME, O_RDWR); * Ex_5_mg_dropone.c

}
if (msgq id == (mqd_t)-1) {
perror("In mq open({)");

exit(1); P
lucid@ubuntu:~/Downloadss ./Drop
[-q] -p msg_prio
/* producing the message */ lucid@ubuntu:~/Downloadss ./Drop
currtime = time(NULL); I (5812) will use priority 11
snprintf(msgcontent, MAX MSG_LEN, "Hello from process %u (at %s).", my pid, ctime(&currtime)); lucid@ubuntu:~/Downloads$./Drop
2 (4ill use priority 116
/* sending the message -- mq_send() */ :~/Downloads$./Drop -
mq_send(msgq_id, msgcontent, strlen(msgcontent)+l, msgprio); ' e priority 17
/* closing the queue -- mg_close() */ :~/Downloadss D

mq_close({msgq_id);

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

18

12/17/2021

A simple Message Queue Example
Re C e i Ve r ucid@ubuntu:~/Downloadss$./Take

/* opening the gqueue -- mg_open() */ Queue "/test":

msgg_id = mg_open(MSGQOBJ NAME, O RDWR); - stores at most 10 messages

if (msgqg id == (mgd t}-1) { = - large at most 8192 bytes each
perror{"In mq open{)");
exit(1l);

- currently holds 3 messages
Received message (56 bytes) from 116: Hello from process 5015 (at Fri Aug 9 07:

/* getting the attributes from the gueue -- mg_getattr(} */
mg_getattr(msgq_id, &msgq attr);
printf("Queue \"%s\":\n\t- stores at most %ld messages\n\t\

- large at most %ld bytes each\n\t- currently holds %ld messages\n",

MSGQOB] NAME, msgq attr.mq maxmsg, msgq attr.mg msgsize, msgq attr.mg curmsgs);

/* getting a message */
msgsz = mg_receive(msgq_id, msgcontent, MAX MSG_LEN, &sender);
if (msgsz = -1) {

perror{"In mq receive()");

exit(1);

printf("Received message (%d bytes) from %d: %s\n", msgsz, sender, msgcontent);

/* closing the queue -- mg_close() */
mg_close(msgq id);
* Ex_5_mq_takeone.c
mg_unlink{MSGQOBI_NAME) ; Fhr T
return @;

K T

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

19

The effect of fork on a message queue

* Message queue descriptors are not (in general) treated as file
descriptors; the unique open, close, and unlink calls should already
suggest this.

* Open message queue descriptors are not inherited by child
processes created by fork.

* Instead, a child process must explicitly open (using mq_open) the
message queue itself to obtain a message queue descriptor

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

20

10

12/17/2021

Detecting non-empty queues

* mq_receive on an empty queue normally causes a process to block,
and this may not be desirable.

* Of course, O_NONBLOCK could be applied to the queue to prevent
this behavior, but in that case the mq_receive call will return -1, and
our only recourse is to try mg_receive again later.

* With the mqg_notify call we can associate a single process with a
message queue so that it (the process) will be notified when the
message queue changes state from empty to non-empty

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

21

maq_notify(mqgd t magdes, const struct
sigevent *notification)

* queuefd
* as usual, to identify the message queue
* sigev
* a struct sigevent object that identifies the signal to be sent to the process to
notify it of the queue state change.
* Once notification has been sent, the notification mechanism is
removed. That is, to be notified of the next state change (from empty
to non-empty), the notification must be reasserted.

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

22

11

12/17/2021

Changing the process to be notified

* Only one process can be registered (at a time) to receive notification
when a message is added to a previously-empty queue.

* If you wish to change the process that is to be notified, you must
remove the notification from the process which is currently
associated (call mg_notify with NULL for the sigev argument), and
then associate the notification with a different process.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

23

Attributes

* mq_getattr (queuefd,&mqstat)

* retrieves the set of attributes for a message queue to the struct mq_attr
object named mgstat.

* the mg_flags member of the attributes is not significant during mq_open, but
it can be set later
* mg_setattr (queuefd,&mqgstat,&old)

* Set (or clear) to O_NONBLOCK flag in the mqattr structure for the identified
message queue

* Retrieve (if old is not NULL) the previously existing message queue attributes
* Making changes to any other members of the mqgattr structure is ineffective.

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

24

12

12/17/2021

Timed send and receive

* Two additional functions, mq_timedsend and mq_timedreceive, are
like mg_send and mq_receive except they have an additional
argument, a pointer to a struct timespec.

* This provides the absolute time at which the send or receive will be
aborted if it cannot be completed (because the queue is full or empty,
respectively).

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

25

Shared Memory

* Sharing memory in POSIX (and many processA C process A
other systems) requires process B shared memory
process B

* creating a persistent “object” associated

with the shared memory, and
* allowing processes to connect to the T

object. mn‘m1|m2‘m3‘... |mn<—

kernel

kernel

* creating or connecting to the persistent

. x § A’ (a) MP (b) sM
object is done in @ manner similar to :

that for a file, but uses the shm_open
system call.

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

26

13

12/17/2021

Shared Memory Functions

* shm_open()
* mmap()

* munmap()

* ftruncate()

* shm_unlink()

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

27

shm_open (name, oflag, mode)

* name is a string identifying an existing shared memory object or a
new one (to be created). It should begin with ‘/’, and contain only one
slash. In QNX 6, these objects will appear in a special directory.

* mode is the protection mode (e.g. 0644).
* shm_open returns a file descriptor, or —1 in case of error

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

28

14

12/17/2021

shm_open (name, oflag, mode)

* oflag is similar to the flags for files:
* O_RDONLY —-read only
* O_RDWR —read/write
* O_CREAT —create a new object if necessary
* O_EXCL —fail if O_CREAT and object exists
* O_TRUNC —truncate to zero length if opened R/W

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

29

ftruncate(int fd, off_t len)

* This function (inappropriately named) causes the file referenced by fd
to have the size specified by len.

* |f the file was previously longer than len bytes, the excess is
discarded.

* |f the file was previously shorter than len bytes, it is extended by
bytes containing zero.

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

30

15

12/17/2021

mmap (void *addr, size t len, int prot,
int flags, int fd, off t off);

* mmap is used to map a region of the shared memory object (fd) to
the process’ address space.

* The mapped region has the given len starting at the specified offset
off.

* Normally addr is 0, and allows the OS to decide where to map the
region. This can be explicitly specified, if necessary.

* mmap returns the mapped address, or —1 on error.(more on next
slide)

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

31

Mmap()

Process address
space

mmap (addr, len, prot, flags, fd, offset);

Shared memaory
object addr"—')_r. I len

offset—
Fenf

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

32

16

12/17/2021

mmap, continued

* prot — selected from the available protection settings:
* PROT_EXEC; This value is allowed, but is equivalent to PROT_READ.
* PROT_NOCACHE;
» PROT_NONE; No data access is allowed.
* PROT_READ; Read access is allowed.
* PROT_WRITE; Write access is allowed. Note that this value assumes
PROT_READ also.
* flags — one or more of the following:
* MAP_FIXED — interpret addr parameter exactly
* MAX_PRIVATE — don’t share changes to object
* MAP_SHARED - share changes to object

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

33

munmap (void *addr, size_t len)

* This function removes mappings from the specified address range.

* This is not a frequently-used function, as most processes will map a
fixed-sized region and use shm_unlink at the end of execution to
destroy the shared memory object (which effectively removes the

mappings).

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

34

17

12/17/2021

shm_unlink (char *name);

* This function, much like a regular unlink system call, removes a
reference to the shared memory object.

* If the are other outstanding links to the object, the object itself
continues to exist.

* |f the current link is the last link, then the object is deleted as a result
of this call.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

35

A Simple Shared Memory Example
Sender

/* creating the shared memory object -- shm_open() */
shmfd = shm_open(SHMOB]_PATH, O _CREAT | O EXCL | O_RDWR, S_IRWXU | S_IRWXG);
if (shmfd < 8) {

perror("In shm open()");

exit(1);

}
fprintf(stderr, "Created shared memory object %s\n”, SHMOB] PATH);

/* adjusting mapped file size (make room for the whole segment to map) -- ftruncate() */
ftruncate(shmfd, shared seg size);

/* regquesting the shared segment -- mmap() */
shared msg = (struct msg_s =)mmap(MULL, shared seg size, PROT_READ | PROT_WRITE, MAP_SHARED, shmfd, @8);
if (shared msg == NULL) {

perror("In mmap{)");

exit(1);

fprintf(stderr, “"Shared memory segment allocated correctly (%d bytes).\n", shared seg size);

srandom{time{NULL));

/* producing a message on the shared segment */

shared_msg->type = randem() % TYPES;

snprintf(shared msg->content, MAX MSG_LENGTH, "My message, type %d, num %ld", shared msg->type, random());

lucid@ubuntu:~/Downloads$./SHMServer
Created shared memory object /fool423
Shared memory segment allocated correctly (56 bytes).
lucid@ubuntu:~/Downloads$ D

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

* Ex_6_shm_server.c

36

18

12/17/2021

A Simple Shared Memory Example
Receiver

/* creating the shared memory object -- shm open() */
shmfd = shm_open(SHMOBJ_PATH, O_RDWR, S_IRWXU | S_IRWXG);
if (shmfd < @) {

perror(“In shm_open()");

exit(1);

}
printf("Created shared memory object %s\n", SHMOB]_PATH);
/* requesting the shared segment -- mmap() */
shared msg = (struct msg s *)mmap(NULL, shared seg size, PROT READ | PROT WRITE, MAP SHARED, shmfd, 8);
if (shared msg == NULL) {
perror("In mmap()");

exit(1);

}
printf("shared memory segment allocated correctly (%d bytes).\n", shared seg size);

printf("Message type is %d, content is: %s\n", shared_msg->type, shared msg->content);

lucid@ubuntu:~/Downloads$./SHMClient

Created shared memory object /fool423
Shared memory segment allocated correctly (56 bytes).
Message type is 6, content is: My message, type 6, num 1256344664

7 EX_G_Shm_CIIent'C Llucid@ubuntu:~/Downloadss []

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

37

References

* http://cs.unomaha.edu/~stanw/091/csci8530/
* http://mij.oltrelinux.com/devel/unixprg/

* Man pages

* man mq_overview

* man mg_open, mg_close etc. etc. etc.

* http://forum.soft32.com/linux2/Utilities-listing-removing-POSIX-IPC-
objects-ftopict15659.html

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

38

19

12/17/2021

Threads vs. Processes

» Creation of a new process using fork is
expensive (time & memory).

» Athread (sometimes called a lightweight
process) does not require lots of memory or
startup time.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

39

fork()

Process A

Process B
fork()

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

40

20

12/17/2021

pthread_create()

Process A
Thread 1

pthread_create()

Process A
Thread 2

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

41

Multiple Threads

 Each process can include many threads.

* All threads of a process share:
* memory (program code and global data)
* open file/socket descriptors
* signal handlers and signal dispositions
» working environment (current directory, user ID, etc.)

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

42

21

12/17/2021

Thread-specific Resources

Thread ID
* Each thread has its own)

* Thread ID - Stack
* Stack, Registers, Program Counter

— Registers

* Threads within the same process can communicate
using shared memory. Program
» Must be done carefully | Counter

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

43

Posix Threads

* We will focus on Posix Threads - most widely supported threads
programming API.

* you need to link with “-lpthread”

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

44

22

12/17/2021

Thread Creation

* pthread_create(
pthread_t *tid,
const pthread_attr_t *attr,
void *(*func)(void *),
void *arg);

* func is the function to be called.
* when func() returns the thread is terminated.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

45

pthread create()

* The return value is 0 for OK.
* positive error number on error.

* Does not set errno !!!

* Thread ID is returned in tid

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

46

23

12/17/2021

pthread create()

Creates a new thread executing a start routine (callback).
function.

#include <pthread.h> On success, the

ID of the
R created thread
int pthreaq create(‘F\/_/’Wi" e e
pthread t |*threac] here.

const pthread attr t *attr,
I void *(*start_routine) (void¥),

| What does this

mean?
void *arg
) .
’
Return type of the Type of parameter
function Name of function pointer to the function

void * (* start_routine) (void *)

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

47

Thread IDs

* Each thread FE_S‘_aﬁuniqueJ D, a thread can find out it's ID by calling
pthread_self().

* Thread IDs are of type pthread_t which is usually an unsigned int.
When debugging, it's often useful to do something like this:
* printf("Thread %u:\n",pthread_self());

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

48

24

12/17/2021

Thread Arguments

* When funcl) is called the value@pecified in the call to
pthread_create() is passed as a parameter.

* func can have only 1 parameter, and it can't be larger than the size of
a void *.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

49

Thread Arguments (cont.)

» Complex parameters can be passed by creating a structure and
passing the address of the structure.

* The structure can't be a local variable (of the function calling
pthread_create)!!
* threads have different stacks!

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

50

25

12/17/2021

Thread args example

» struct { int x,y } 2ints;

void *blah(void *arg) {
struct 2ints *foo = (struct 2ints *) arg;
printf("%u sum of %d and %d is %d\n",
pthread_self(),
foo->x, foo->y,
foo->x+foo->y);
return(NULL);

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

51

menc) Pthread workflow

When a process starts
execute in the main()

function, there is one thread

of control.
start_routine()
The new thread execute the
A 4 start routine (callback).
pthread_create() . J

Creates a new thread and
gives it a start routine >
(callback) to execute. pthread exit()

\ 4

The new threads calls
pthread_exit() to

A 4 terminate.
pthread_join() \ J

Wait for the new thread to
terminate.

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

52

26

12/17/2021

Thread Lifespan

» Once a thread is created, it starts executing the
function func() specified in the call to
pthread_create().

» If func() returns, the thread is terminated.

» A thread can also be terminated by calling
pthread_exit().

» If main() returns or any thread calls exit()all threads are
terminated.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

53

pthreads_create_exit_null_join.c

This program creates four threads and wait for all of them to
terminate.

$./bin/pthreads_create_exit_null_join
main() - before creaing new threads
thread @ - hello

thread 1 - hello
thread 2 - hello
thread 3 - hello
main() - thread @ terminated
main() - thread 1 terminated Ex 1 pthread]__c
main() - thread 2 terminated 1\
main() - thread 3 terminated
main() - all new threads terminated

$

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

54

27

12/17/2021

void* hello(void* arg) {
int i (int*) arg;
printf(" thread %d - hello\n", i)
pthread exit(NULL);

This is the start routine each of the threads will execute.

Every start routine must take void* as argument and return void*.

When creating a new thread we will use a pointer to an integer as
argument, pointing to an integer with the thread number.

Here we first cast from void* to int* and then dereference the
pointer to get the integer value.

Terminate the thread by calling pthread_exit(NULL). Here NULL
means we don't specify a termination status.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

I

pthread t tid[NUM_OF_ THREADS];

int arg[NUM OF THREADS];

pthread attr t attr;

pthread attr_ init(tattr);

Declaration of arrays used to store thread IDs and arguments for
each threads start routine, the hello() function.

Use default attributes when creating new threads.

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

56

28

12/17/2021

for (int i = 0; i < NUM_OF_THREADS; i++) {

arg[i] i)
pthread create(stid[i], #attr, hello, sarg[i]);

} © 0 06 O

1) Pass in a pointer to tid_t. On success tid[i] will hold
the thread ID of thread number i.

2) Pass a pointer to the default attributes.
3) The start routine (a function pointer).

4) A pointer to the argument for the start routine for thread
number i.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

57

for (int i = 0; i < NUM_OF _THREADS; i++){
if (pthread join(tid[i], NULL) 0) {
perror("pthread join");
exit (EXIT FAILURE);
) (2

printf("main() - thread %d terminated\n", i);

}

printf("main() - all new threads terminated\n"); Ex 2 pthreadZ C

1) Wait for thread with thread ID tid[i] to terminate.

2) Pass NULL here means we don't care about the exit status
of the terminated thread.

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

58

29

12/17/2021

pthreads_unsynchronized_concurrency.c

Given a string, write a program using Pthreads to
concurrently:

% calculate the length of the string.

% calculate the number of spaces in the string.
% change the string to uppercase.

% change the string to lowercase.

—

What does it really mean to do all of the
above concurrently?

Yildiz Teknik, Universitesi - Bilgisayar Mihendisliji Bolimii

59

Header files and global data Start routines (1)

void* length(void *arg) {
char *ptr = (char*) arg,;

i.h> // sleep()

int i =8;
ne NUM_OF_THREADS 4 while (ptr[il) i++;

LENGTH = i;
/* A global string for the threads to work on. */ }
char STRING[] = "The string shared among the threads.";

void* num_of_spaces(void *arg) {

/* Global storage for results. */ char *ptr = (char*) arg;
int LENGTH; inti=9;
int NUM_OF_SPACES; int n = @;

while (ptr[i]) {
if (ptr[i] ==
1++;

) N+

}
NUM_OF _SPACES = n;
}

Yildiz Teknik Universitesi -

Bilgisayar Mihendisligi Boliimii

The implementation
details of these
functions are not
important for the
purpose of this exercise.

But, note that to for
Pthreads to be able to
use these functions as
start routines for the
threads, they must all be
declared void* and

take a single argument

of type void*.

60

30

12/17/2021

main() - step 1

int main(int argc, char *argv]) {

/* An array of thread identifiers, needed by pthread_join() later... */

pthread_t t1d[NUM_OF_THREADS] ; .

We could simply call pthread_create() four
times using the four different string functions:

* length()
* num_of_spaces()
* to_upppercase()

* to_lowercase()
/* Attributes (stack size, sche

, for example like this.
pthread_attr_t a P

/* Get defoult attributes for the threy [*/
pthread_attr_init(&attr);

pthread_create(&tid[i], &attr, length, STRING);

But, it is more practical (and fun) to collect pointers to all the functions in an array.

main() - step 2

t main{int gc, char *argv(]) {
/* An array of thread identifiers, needed by pthread_join() later... */
pthread_t i [NUM_DF __THREADS] ;
/* An array of pointers to the callback functions. */
void® (*callback[NUM_OF_THREADS]) (void* org) =
{length,

to_uppercase,
to_lowercase,
num_of_spaces};

pthread_attr_t a

/* Get default ottributes for the threads. */
pthread_ottr_init(attr);

/* (reate one thread running each of the callbacks. */

for (int 1 = @; i < NUM_OF_THREADS; i++) {
pthread_create(&tid[i], &ottr, *collback[i], STRING);
_

}

/* Woit for all threads to terminate. */

for Cint i = @; i < NUM_OF_THREADS; i++){
pthread_join(tid[i], NULL);

/* Print results, */
printf(L » STRING, LENGTH);
printf(,» STRING, NUM_OF_SPACES);

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

/* Attributes (stock size, scheduling information) for the threads.

Because the threads execute and operate on the same
Ex 3 pth readg.c data concurrently, the result of to_uppercase() and

to_lowercase() will be unpredictable due to data races

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

62

31

12/17/2021

Detached vs. Joinable Ex_4_pthread4.c

* Each thread can be either joinable or detached.

* Joinable: on thread termination the thread ID and exit status are
saved by the OS.

A detached thread cannot be joined.

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

* Detached: on termination all thread resources are released by the OS.

63

Detached vs. Joinable (Contd.)

Master Y
pthreaf_create()' _— pthread_;o:.n()' —

Worker
Thread

DOWORK ——» pthread exit()|
Worker
Thread

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

32

12/17/2021

Howto detach
Ex_5_pthread>5.c

#¥include <pthread.h>
- / T T, T
pthread t tid / thr ead IL
pthread attr ¢ attr; // thread attribute
// set thread detachstate attribute to DETACHED
pthread attr init(&attr);
pthread attr setdetachstate(&éattr, PTHREAD CREATE DETACHED);
// create the thread
pthread create(&tid, &attr, start routine, arg);

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

65

Shared Global Variables

* Possible problems
* Global variables

* Avoiding problems

* Synchronization Methods
* Mutexes
* Condition variables

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

66

33

12/17/2021

Possible problems

* Sharing global variables is dangerous - two threads may attempt to
modify the same variable at the same time.

* Just because you don't see a problem when running your code
doesn't mean it can't and won't happen!!!!

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

pthreads includes support for Mutual
Exclusion primitives that can be used
to protect against this problem.

AVO | d | ng The general idea is to lock something
before accessing global variables and

p 'O b | ems to unlock as soon as you are done.

Shared socket descriptors should be
treated as global variables!!!

Yild1s Teknik Oniversitesi - @ilgisayar
MahendisCifi Bolama

34

12/17/2021

Mutexes
Ex_6_pthread6.c

Initialization to
PTHREAD_MUTEX_INITIALIZER is
required for a static variable!

A global variable of type pthread_mutex_t counter_mtx =
pthread_mutex_t is required: PTHREAD_MUTEX_INITIALIZER;

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

69

To lock use:

e pthread_mutex_lock(pthread_mutex_t
&);

To unlock use:

¢ pthread_mutex_unlock(pthread_mutex_t
&);

Both functions are blocking!

35

12/17/2021

pthreads support condition variables,
which allow one thread to wait (sleep) for
an event generated by any other thread.

C on d iti on ;I:(i)sblae"r?]\,lvs us to avoid the busy waiting
Variables

pthread_cond_t foo =
PTHREAD_COND_INITIALIZER;

Condition Variables (cont.)

* A condition variable is always used with mutex.

* pthread_cond_wait(pthread_cond_t *cptr,
pthread_mutex_t *mptr);

* pthread_cond_signal(pthread, cond_t *cptr);
\ Ex_7_ pthread7.c

don'’t let the wold signal confuse you -
this has nothing to do with Unix signals

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

72

36

12/17/2021

Summary

* Threads are awesome, but dangerous. You have to pay attention to
details or it's easy to end up with code that is incorrect (doesn't
always work, or hangs in deadlock).

* Posix threads provides support for mutual exclusion, condition
variables and thread-specific data.

* |[HOP serves breakfast 24 hours a day!

Yildiz TeRnik Oniversitesi - Bilgisayar Mihendisliji Bolimi

73

References

* https://github.com/uu-0s-2019/

* Getting Started With POSIX Threads by Tom Wagner & Don Towsley
Department of Computer Science University of Massachusetts at
Ambherst July 19, 1995

Yildiz Teknik Oniversitesi - Bilgisayar Miihendislifi Bolimii

74

37

