Computer Vision Prof. Dr. Songül Varlı

DATASETS- CIFAR10 AND MNIST
CONVOLUTION LAYER
MAXPOOLING
ACTIVATION FUNCTIONS
FULLY CONNECTED LAYER
SOFTMAX OUTPUT

Dataset: CIFAR-10

"Programming has Hello World, machine learning has MNIST"

Features: 28×28 matrix

Flatten

Convolution Layer

activation map

If we have 65×5 filters, we'll get 6 separate activation map. We stack these up to get a new image of size $28 \times 28 \times 6$

Convolution

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6×6 image

These are the network parameters to be learned.

1	-1	-1
-1	1	-1
-1	-1	1

-1	1	-1
-1	1	-1
-1	1	-1

Each filter detects a small pattern (3×3).

Filter 1 stride $=1$

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6×6 image

Filter 1
If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6×6 image

Convolution $\quad \begin{array}{cccc}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ -1 & -1\end{array}$
Filter 1 stride=1

1	0	0	0	0	1				
0	1	0	0	1	0				
0	0	1	1	0	0				
1	0	0	0	1	0				
0	1	0	0	1	0				
0	0	1	0	1	0				
6×6 image							-3	-1	-1

Convolution

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6×6 image

Repeat this for each filter

Convolution

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2
stride $=1$

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Repeat this for each filter

$$
-1)(-1)(-1)(-1
$$

Two 4×4 images
Forming $2 \times 4 \times 4$ matrix
-1
0
-4
3

\section*{Convolution Color image: RGB 3 channels
 | | | |
| :--- | :--- | :--- |
| -1 | 1 | -1 |
| -1 | 1 | -1 |
| -1 | 1 | -1 |}

Color image

0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Low level
features

Mid level features

High level features

A closer look at convolution operation:
Stride= 1

$\mathrm{N}=$ input image size 7x7 input image
$\mathrm{F}=$ filter size 3×3 filter

Output will be 5×5

Stride=2

$\mathrm{N}=$ input image size $7 x 7$ input image

F=Filter Size 3x3 filter

Output will be 3×3

Output Size of convolution operation?

e.g. $N=7$ and $F=3$

For Stride $=1$, Output $=\frac{(7-3)}{1}+1=5$
For Stride $=2$, Output $=\frac{(7-3)}{2}+1=3$
For Stride $=3$, Output $=\frac{(7-3)}{3}+1=2,33_{(\text {Does not fit) }}$

$$
\text { Output Image Size }=\frac{N-F}{\text { Stride }}+1
$$

In practice: Common to zero pad the border
$\mathrm{P}=1$ (Zero padding with one)

$\mathrm{N}=$ input image size 7×7 input image

After zero padding with one Input image will be $9 x 9 x$
$\mathrm{F}=$ Filter size 3x3 filter

Output will be 7x7
(Same size with input image)

Filters of size F x F and zero padding (F-1)/2 will preserve the output image size

e.g.
$\mathrm{F}=3$, Zero padding with 1
$\mathrm{F}=5$, Zero padding with 2

Exercise:

Input image volume $=32 \times 32 \times 3$

10 Filters with the size of $5 \times 5 \times 3$ with stride 1 , pad 2

Output volume size=???

Exercise:

Input image volume $=32 \times 32 \times 3$

10 Filters with the size of $5 \times 5 \times 3$ with stride 1 , pad 2

Output volume size $=32 \times 32 \times 10$

Exercise:

Input image volume $=32 \times 32 \times 3$

10 Filters with the size of $5 \times 5 \times 3$ with stride 1 , pad 2

Number of parameters in this layer=???

Exercise:

Input image volume $=32 \times 32 \times 3$

10 Filters with the size of $5 \times 5 \times 3$ with stride 1 , pad 2

Each filter has $5 \times 5 \times 3=75+1 \quad(+1$ bias parameter $)$

Number of parameters in this layer $=10 \times 76=760$ parameters

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P.
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F+2 P\right) / S+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$ (i.e. width and height are computed equally by symmetry)
- $D_{2}=K$
- With parameter sharing, it introduces $F \cdot F \cdot D_{1}$ weights per filter, for a total of $\left(F \cdot F \cdot D_{1}\right) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_{2} \times H_{2}$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

(btw, 1×1 convolution layers make perfect sense)

Preview

Max Pooling

- Makes the representation smaller and more manageble
- Operates over each activation map independently

Why Pooling

- Subsampling pixels will not change the object

bird

We can subsample the pixels to make image smaller
fewer parameters to characterize the image

Max Pooling

1	0	0	0	0	1		
0	1	0	0	1	0		
0	0	1	1	0	0		
1	0	0	0	1	0		
0	1	0	0	1	0		
0	0	1	0	1	0	\quad	
:---:							
Conv							
Max							
Pooling							

6×6 image
New image but smaller

2×2 image
Each filter is a channel

Max Pooling

- Makes the representation smaller and more manageble
- Operates over each activation map independently

Maxpool with 2×2 filter and stride 2
 \rightarrow

6	8
3	4

Activation Functions

Sigmoid
$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ReLU
$\max (0, x)$

Leaky ReLU
$\max (0.1 x, x)$

Maxout

$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$
ELU
$\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}$

Activation Function: Sigmoid

Takes a real-valued number and "squashes" it into range between 0 and 1.

+ Nice interpretation as the firing rate of a neuron
- $0=$ not firing at all
- 1 = fully firing
- Sigmoid neurons saturate and kill gradients, thus NN will barely learn
- when the neuron's activation are 0 or 1 (saturate)
) gradient at these regions almost zero
- almost no signal will flow to its weights
). if initial weights are too large then most neurons would saturate

Activation Function: tanh

Takes a real-valued number and "squashes" it into range between
-1 and 1 .

- Like sigmoid, tanh neurons saturate
- Unlike sigmoid, output is zero-centered
- Tanh is a scaled sigmoid: $\tanh (x)=2 \operatorname{sigm}(2 x)-1$

Activation Function :ReLu Rectified Linear Unit

Takes a real-valued number and thresholds it at zero

Most Deep Networks use ReLU nowadays
()Trains much faster

- accelerates the convergence of SGD
- due to linear, non-saturating form
;)Less expensive operations
- compared to sigmoid/tanh (exponentials etc.)
- implemented by simply thresholding a matrix at zero
-) More expressive
()Prevents the gradient vanishing problem

Flattening

Fully Connected
Feedforward network

Fully Connected Layer

$32 \times 32 \times 3$ image -> stretch to 3072×1

Contains neurons that connect to the entire input volume as in ordinary Neural Networks

$$
\mathrm{W}_{(10 \times 3072)} * \mathrm{x}_{(1 \times 3072)}=\text { Activation }_{(1 \times 10)}
$$

Neural Network Intro

Activation functions

How do we train?
$4+2=6$ neurons (not counting inputs)
$[3 \times 4]+[4 \times 2]=20$ weights $4+2=6$ biases
26 learnable parameters

Demo

Training

Optimize (min. or max.) objective/cost function $J(\theta)$ Generate error signal that measures difference between predictions and target values

Use error signal to change the weights and get more accurate predictions Subtracting a fraction of the gradient moves you towards the (local) minimum of the cost function

Gradient Descent

Recursively apply chain rule though each node

One forward pass

Text (input) representation TFIDF Word embeddings							
0.2	-0.5	0.1	0.1	1.0	E	0.95	very positive positive
2.0	1.5	1.3	0.2	3.0		3.89	
0.5	0.0	0.25		0.025		0.15	negative
-0.3	2.0	0.0	0.3	0.0		0.37	very negative
	W		x_{i}	b		$x_{i} ; W$	

SoftMax Output

Prior to applying softmax, some vector components could be negative, or greater than one; and might not sum to 1 ; but after applying softmax, each component will be in the interval $(0,1)$, and the components will add up to 1 , so that they can be interpreted as probabilities.

3.2			0.13	
5.1	\exp	164.0	normalize	0.8
-1.7		\rightarrow		0.8

Today: CNN Architectures

Case Studies
\square AlexNet
\square VGG
\square GoogLeNet
\square ResNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

\square The annual "Olympics" of computer vision.
\square Teams from across the world compete to see who has the best computer vision model for tasks such as classification, localization, detection, and more.

2012 marked the first year where a CNN was used to achieve a top 5 test error rate of 15.3%.
\square The next best entry achieved an error of 26.2%.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012] "AlexNet"

Architecture:

- CONV1
- MAX POOL1
- NORM1
- CONV2
- MAX POOL2
- NORM2
- CONV3
- CONV4
- CONV5
- MAX POOL3
- FC6
- FC7
- FC8

Input: 227x227x3 images (224x224 before padding)
First layer: 9611×11 filters applied at stride 4

Output volume size?

$$
(N-F) / s+1=(227-11) / 4+1=55->[55 \times 55 \times 96]
$$

Number of parameters in this layer?

$$
(11 * 11 * 3) * 96=35 \mathrm{~K}
$$

AlexNet

AlexNet

> Deep CNN architecture proposed by Krizhevsky [Krizhevsky NIPS 2012].

- 5 convolutional layers (with pooling and ReLU)
- 3 fully-connected layers
- won ImageNet Large Scale Visual recognition Challenge 2012
- top-1 validation error rate of 40.7%

AlexNet

VGGNet

Very Deep Convolutional Networks For Large Scale Image Recognition - Karen Simonyan and Andrew Zisserman; 2015
Input
3×3 conv, 64
3×3 conv, 64
Pool 1/2
$3 x 3$ conv, 128
3×3 conv, 128
Pool 1/2
3×3 conv, 256
3×3 conv, 256
Pool 1/2
$3 x 3$ conv, 512
3×3 conv, 512
3×3 conv, 512
Pool 1/2
3×3 conv, 512
3×3 conv, 512
3×3 conv, 512
Pool 1/2
FC 4096
FC 4096
FC 1000
\square The runner-up at the ILSVRC 2014 competition
$\square 140$ million parameters
\square Smaller filters
Only 3×3 CONV filters, stride 1, pad 1 and 2×2 MAX POOL, stride 2
\square Deeper network
AlexNet: 8 layers
VGGNet: 16-19 layers
\square VGGNet: 7.3\% top 5 error in ILSVRC'14

VGGNet

Why use smaller filters? (3×3 conv)

Stack of three 3×3 conv (stride 1) layers has the same effective receptive field as one 7×7 conv layer.

What is the effective receptive field of three 3×3 conv (stride 1) layers?
7x7

But deeper, more non-linearities
And fewer parameters: 3 * $\left(3^{2} C^{2}\right)$ vs. $7^{2} C^{2}$ for C channels per layer

Input

3×3 conv, 64
3×3 conv, 64
Pool
3×3 conv, 128
3×3 conv, 128
Pool
3×3 conv, 256
3×3 conv, 256
3×3 conv, 256
Pool
3×3 conv, 512
3×3 conv, 512
3×3 conv, 512
Pool
3×3 conv, 512
3×3 conv, 512
3×3 conv, 512
Pool
FC 4096
FC 4096
FC 1000
memory: 224*224*3=150K
memory: 224*224*64=3.2M
memory: $224 * 224 * 64=3.2 \mathrm{M}$
memory: 112*112*64=800K
memory: 112*112*128=1.6M
memory: $112 * 112 * 128=1.6 \mathrm{M}$
memory: 56*56*128=400K
memory: $56 * 56 * 256=800 \mathrm{~K}$
memory: $56 * 56 * 256=800 \mathrm{~K}$
memory: 56*56*256=800K
memory: 28*28*256=200K
memory: 28*28*512=400K
memory: $28 * 28 * 512=400 \mathrm{~K}$
memory: $28 * 28 * 512=400 \mathrm{~K}$
memory: 14*14*512=100K
memory: 14*14*512=100K
memory: 14*14*512=100K
memory: 14*14*512=100K
memory: 7*7*512=25K
memory: $7 * 7 * 512=25 \mathrm{~K}$ params: 0
memory: 4096 params: $4096 * 4096=16,777,216$
memory: 1000 params: $4096 * 1000=4,096,000$
params: 0
params: $(3 * 3 * 3) * 64=1,728$
params: $(3 * 3 * 64) * 64=36,864$
params: 0
params: $\left(3^{*} 3 * 64\right)^{*} 128=73,728$
params: $(3 * 3 * 128) * 128=147,456$
params: 0
params: $(3 * 3 * 128) * 256=294,912$
params: $(3 * 3 * 256) * 256=589,824$
params: $(3 * 3 * 256) * 256=589,824$
params: 0
params: $(3 * 3 * 256) * 512=1,179,648$ params: $(3 * 3 * 512) * 512=2,359,296$ params: $(3 * 3 * 512) * 512=2,359,296$ params: 0
params: $(3 * 3 * 512) * 512=2,359,296$ params: $(3 * 3 * 512) * 512=2,359,296$ params: $(3 * 3 * 512) * 512=2,359,296$
memory: 4096 params: $7 * 7 * 512 * 4096=102,760,448$

VGG16:

TOTAL memory: $24 \mathrm{M} * 4$ bytes $\sim=96 \mathrm{MB} /$ image
TOTAL params: 138M parameters

VGGNet

Details/Retrospectives :

ILSVRC'14 2nd in classification, 1st in localization
Similar training procedure as AlexNet
No Local Response Normalisation (LRN)
Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
Use ensembles for best results
FC7 features generalize well to other tasks
Trained on 4 Nvidia Titan Black GPUs for two to three weeks.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

GoogLeNet Going Deeper with Convolutions - Christian Szegedy et al.; 2015

\square ILSVRC 2014 competition winner
\square Also significantly deeper than AlexNet
\square x12 less parameters than AlexNet
\square Focused on computational efficiency

GoogleNet

- 22 layers
- Efficient "Inception" module - strayed from the general approach of simply stacking conv and pooling layers on top of each other in a sequential structure
- No FC layers
- Only 5 million parameters!
- ILSVRC'14 classification winner (6.7\% top 5 error)

GoogLeNet

"Inception module": design a good local network topology (network within a network) and then stack these modules on top

ResNet

ResNet

Deep Residual Learning for Image Recognition - Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun; 2015
\square Extremely deep network - 152 layers
\square Deeper neural networks are more difficult to train.
\square Deep networks suffer from vanishing and exploding gradients.
\square Present a residual learning framework to ease the training of networks that are substantially deeper than those used previously.

ResNet

\square ILSVRC'15 classification winner (3.57% top 5 error, humans generally hover around a 5-10\% error rate)

- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

ResNet

- What happens when we continue stacking deeper layers on a convolutional neural network?

- 56-layer model performs worse on both training and test error
-> The deeper model performs worse (not caused by overfitting)!

ResNet

- Hypothesis: The problem is an optimization problem. Very deep networks are harder to optimize.
- Solution: Use network layers to fit residual mapping instead of directly trying to fit a desired underlying mapping.
- We will use skip connections allowing us to take the activation from one layer and feed it into another layer, much deeper into the network.
- Use layers to fit residual $F(x)=H(x)-x$ instead of $\mathrm{H}(\mathrm{x})$ directly

ResNet

Residual Block

Input x goes through conv-relu-conv series and gives us $\mathrm{F}(\mathrm{x})$. That result is then added to the original input x.

Let's call that $H(x)=F(x)+x$.
In traditional CNNs, $\mathrm{H}(\mathrm{x})$ would just be equal to $\mathrm{F}(\mathrm{x})$. So, instead of just computing that transformation (straight from x to $F(x)$), we're computing the term that we have to add, $\mathrm{F}(\mathrm{x})$, to the input, x .

"Plain" layers

ResNet

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3×3 conv layers
- Periodically, double \# of filters and downsample spatially using stride 2 (in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)

Accuracy comparison

K

Keras

Keras: The Python Deep Learning library

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

TensorFlow

TensorFlow offers multiple levels of abstraction so you can choose the right one for your needs. Build and train models by using the high-level Keras API, which makes getting started with TensorFlow and machine learning easy.

If you need more flexibility, eager execution allows for immediate iteration and intuitive debugging. For large ML training tasks, use the Distribution Strategy API for distributed training on different hardware configurations without changing the model definition.
https://keras.io/backend/
https://www.tensorflow.org/about
import tensorflow as tf
mnist $=\mathrm{tf}$. keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
print('X_train:', x_train.shape)
print('y_train:', y_train.shape)
print('X_test:', x_test.shape)
print('y_test:', y_test.shape)
model $=$ tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape $=(28,28)$),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

References

- Gradient-based learning applied to document recognition; ann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner; 1998
- ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton; 2012
- Very Deep Convolutional Networks For Large Scale Image Recognition - Karen Simonyan and Andrew Zisserman; 2015
- Going Deeper with Convolutions - Christian Szegedy et al.; 2015
- Deep Residual Learning for Image Recognition - Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; 2015
- Stanford CS231- Fei-Fei \& Justin Johnson \& Serena Yeung. Lecture 9
- Coursera, Machine Learning course by Andrew Ng.

References

- The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) by Adit Deshpande https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
- CNNs Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more ... By Siddharth Das
https://medium.com/@siddharthdas 32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
- Slide taken from Forward And Backpropagation in Convolutional Neural Network. - Medium , By Sujit Rai https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e

