Computer Vision Prof. Dr. Songül Varlı

HISTOGRAM OF ORIENTED GRADIENTS
INTEREST POINT DETECTION
CORNER DETECTION

Histograms of Oriented Gradients for Human Detection N. Dalal and B. Triggs , CVPR 2005

- Detecting humans in images is a challenging task owing to their variable appearance and the wide range of poses that they can adopt. The first need is a robust feature set that allows the human form to be discriminated cleanly, even in cluttered backgrounds under difficult illumination
- The feature sets for human detection, showing that locally normalized Histogram of Oriented Gradient (HOG) descriptors provide excellent performance relative to other existing feature sets including wavelets

HOG feature extraction steps

1. Compute centered horizontal and vertical gradients with no smoothing
2. Compute gradient orientation and magnitudes

- For color image, pick the color channel with the highest gradient magnitude for each pixel.

3. For a 64×128 image,
4. Divide the image into 16×16 blocks of 50% overlap.$7 \times 15=105$ blocks in total
5. Each block should consist of 2×2 cells with size 8×8.
6. Quantize the gradient orientation into 9 binsThe vote is the gradient magnitudeInterpolate votes bi-linearly between neighboring bin center.The vote can also be weighted with Gaussian to downweight the pixels near the edges of the block.
7. Concatenate histograms (Feature dimension: $105 \times 4 \times 9=3,780$)

1- Computing Gradients
 2- Compute Gradient Magnitude and Orientation

\square Centered: $\grave{f}(x)=\lim _{k \rightarrow \infty}\left(\frac{f(x+h)-f(x-h)}{2 h}\right)$
\square Filter masks in x and y directions
-Centered:

\square Magnitude: $M=\sqrt{s_{x}^{2}+s_{y}^{2}}$

DOrientation: $\theta=\arctan \left(\frac{s_{y}}{s_{x}}\right)$

4- Divide Image into Blocks 5- Divide Blocks into Cells

For a 64x128 Image

- Divide 16x16 blocks of 50% overlap. $7 \times 15=105$ blocks in total
- Each block should consist of 2×2 cells with size 8×8.

$\mathrm{B1}$	$\mathrm{B2}$	
C	C	C
C	C	C

6- Quantize the Gradient Orientation into 9 bins

Each block consists of 2×2 cells with size 8×8
\square Quantize the gradient orientation into 9 bins (0-180)
\square The vote is the gradient magnitude interpolate
 votes linearly between neighboring bin centers.

Example: if $\theta=85$ degrees.

- Distance to the bin centre Bin 70 and Bin 90 are 15 and 5 degrees, respectively.
- Hence, ratios are $5 / 20=1 / 4,15 / 20=3 / 4$.
- The vote can also be weighted with Gaussian to downweight the pixels near the edges of the block.

7- Concatenation of Histograms and Normalization

 Block (2×2 cell) is performed by 50% overlap

Final Feature Vector

\square Concatenate histograms
\square Make it a 1D matrix of length 3780 .

\square Visualization

Results

Navneet Dalal and Bill Triggs "Histograms of Oriented Gradients for Human Detection" CVPR05

Example of Using HOG

HOG can represent a rough shape of the object, so that it has been used for general object recognition, such as people or cars.

In order to achieve the general object recognition, the classifier (eg SVM) is be used.

1. To teach the classifier, the correct image and the incorrect image.
2. Scan the classifier to determine whether there are people in the detection window.

SVM Classifier

SVM divides space into two domains according to a teacher signal.
New examples are predicted to belong to a category based on which side of the gap domain.

\%matplotlib inline
import matplotlib.pyplot as plt
from skimage.feature import hog
from skimage import data, exposure
from skimage.color import rgb2gray
image1 = data.astronaut()
image=rgb2gray(image1)
print(image.shape)
fd, hog_image $=$ hog(image, orientations=8, pixels_per_cell=(16, 16), cells_per_block=(1, 1), visualise=True)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8), sharex=True, sharey=True)
ax1.axis('off')
ax1.imshow(image, cmap=plt.cm.gray)
ax1.set_title('Input image')
\# Rescale histogram for better display
hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 10))
ax2.axis('off')
ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)
ax2.set_title('Histogram of Oriented Gradients')
plt.show()

Interest Point Detection

Local features: main components

1) Detection: Identify the interest points
2) Description :Extract feature vector descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Interest Operator Repetability

We want to detect (at least some of) the same points in both images.

- Yet we have to be able to run the detection procedure independently per image.

What is an Interest Point

Expressive texture

The point at which the direction of the boundary of object changes abruptly

Synthetic and Real Interest Points

Corners are indicated in red

Properties of Interest Point Detectors

\square Detect all (or most) true interest points
\square No false interest points
\square Well localized.
\square Robust with respect to noise.
\square Efficient detection

Harris Corner Detector

Corner point can be recognized in a window
\square Shifting a window in any direction should give a large change in intensity

Harris Detector: Basic Idea

"flat" region:
no change in
all directions

"edge":
no change along the edge direction

"corner":
significant change in all directions

Harris Detector: Mathematics

Change of intensity for the shift $[u, v]$:

Window function $w(x, y)=$

1 in window, 0 outside

Gaussian

Harris Detector: Mathematics

For small shifts $[u, v]$ we have a bilinear approximation:

$$
E(u, v) \cong[u, v] \quad M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where M is a 2×2 matrix computed from image derivatives:

$$
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis
$E(u, v) \cong[u, v] \quad M\left[\begin{array}{l}u \\ v\end{array}\right] \quad \lambda_{1}, \lambda_{2}$ - eigenvalues of M
direction of the
fastest change

Ellipse $E(u, v)=$ const

direction of the slowest change

Harris Detector: Mathematics

Classification of image points using eigenvalues of M :

from matplotlib import pyplot as plt
from skimage import data
from skimage.feature import corner_harris, corner_subpix, corner_peaks
from skimage.transform import warp, AffineTransform
from skimage.draw import ellipse
tform $=$ AffineTransform(scale=(1.3, 1.1), rotation=1, shear=0.7, translation=(210, 50))
image = warp(data.checkerboard(), tform.inverse, output_shape=(350, 350))
rr, cc = ellipse(310, 175, 10, 100)
image[rr, cc] = 1
image[180:230, 10:60] = 1
image[230:280, 60:110] = 1
coords = corner_peaks(corner_harris(image), min_distance=5)
coords_subpix = corner_subpix(image, coords, window_size=13)
fig, ax = plt.subplots()
ax.imshow(image, interpolation='nearest', cmap=plt.cm.gray)
ax.plot(coords[:, 1], coords[:, 0], '.b', markersize=3)
ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15)
ax.axis((0, 350, 350, 0))
plt.show()

Deep Learning

Feature Extraction by using Convolutional Neural Network-CNN

Convolutional Neural Networks-CNN

\square Consider learning an image
\square Some patterns are much smaller than the whole image

Convolutional Neural Networks-CNN

\square Same pattern appears in different places: They can be compressed! What about training a lot of such "small" detectors and each detector must "move around".

They can be compressed to the same parameters.

Convolutional Neural Networks-CNN

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

Convolution

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6×6 image

These are the network parameters to be learned.

1	-1	-1
-1	1	-1
-1	-1	1

-1	1	-1
-1	1	-1
-1	1	-1
Filter 2		

Each filter detects a small pattern (3×3).

Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1 stride $=1$

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6×6 image

Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1 If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6×6 image

Convolution \quad	1	-1	-1
-1	1	-1	
-1	-1	1	

Filter 1 stride=1

1	0	0	0	0	1					
0	1	0	0	1	0					
0	0	1	1	0	0					
1	0	0	0	1	0					
0	1	0	0	1	0					
0	0	1	0	1	0					
6×6 image							-3	-1	-3	-1

Convolution

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2
stride $=1$

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Repeat this for each filter

$$
-1)(-1)(-1)(-1
$$

Two 4×4 images
Forming $2 \times 4 \times 4$ matrix
-1
0
-4
3

Convolution

 Color image: RGB 3 channelsColor image

-1	1	-1
-1	1	-1
-1	1	-1

$0 \sim 0$					
	0	0	0	0	
0	1	0	0	1	0
0	0	1	1	0	
	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	

